Accueil

TAC Library

S'abonner à flux TAC Library
New TAC Library Materials.
Mis à jour : il y a 18 min 21 sec

Development of a Computer-Vision Based on Real-Time Pedestrian Comfort Estimation System (Poster)

lun, 01/20/2020 - 22:39
Development of a Computer-Vision Based on Real-Time Pedestrian Comfort Estimation System (Poster)
by Yang,S; Claudio,P; Ahmad,A; Park,PY; Sohn,G.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5118 - INTERNET


Pedestrian comfort is often represented by pedestrian level of service (PLOS). PLOS usually measured using aggregated level of pedestrian volume, speed, and/or density. Very few studies have considered individual pedestrians’ specific gait characteristics to present pedestrian comfort. However, they did not measure individual pedestrians’ comfort real-time basis. The goal of this study was to develop a novel method that can measure individual pedestrians’ comfort real-time basis using pedestrians’ gait characteristics.

Advanced Rail Infrastructure Mapping Technologies for Train Derailment Mitigation (Poster)

lun, 01/20/2020 - 22:39
Advanced Rail Infrastructure Mapping Technologies for Train Derailment Mitigation (Poster)
by Sohn,G; Shabazi,M; Park,P; Asgary,A.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5105 - INTERNET


More than 60% of rail accidents were reported due to derailments. The most significant causes of derailment accidents are related to defects of track/wayside elements and impacts of environmental factors. Mobile LiDAR (Light Detection and Ranging) System (MLS) is an emerging technology enabling rapid engineering grade mapping and virtual surveying over railway infrastructure. Despite its large potential, MLS has been only used for rail track condition assessment. Its potential for railway asset management has not been exploited yet.

VISSIM Microsimulation Analysis of Truck Signal Priority (Poster)

lun, 01/20/2020 - 21:23
VISSIM Microsimulation Analysis of Truck Signal Priority (Poster)
by Rampure,R; Gingerich,K; Park,PY.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5164 - INTERNET


Stopped trucks increase congestion at intersections due to low acceleration rates (Fig. 2) while high volumes of trucks may block all lanes (Fig. 3). Congestion causes traffic delays that lead to economic and environmental costs for trucks and additional frustration for other drivers. Many studies and applications exist for transit signal priority (TSP), but truck signal priority (TkSP) is comparatively unknown.

City of St. Albert's ITS Strategic Plan - A Smart City Roadmap (Poster)

lun, 01/20/2020 - 20:59
City of St. Albert's ITS Strategic Plan - A Smart City Roadmap (Poster)
by Kitasaka,K; Eklund,K; Schick,D.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5156 - INTERNET


The City of St Albert in Alberta, a community of 65,000, has an abundance of amenities that attract businesses and residents that seek the “small town” environment, yet offers activities common to larger cities. Stepping into St Albert, these amenities are visible to all. Arts and cultural activities are plentiful. St Albert is called the “Botanical Arts City”. Walking through its downtown core is like strolling in a quaint European town with an underlying modern transportation network. Not surprisingly, as the City grows, it is experiencing “big city” problems such as traffic congestion, delays and accidents. St Albert has taken steps to develop an ITS “roadmap” to protect this future vision of an inviting, vibrant community, The St Albert Transportation Master Plan (TMP) and the Smart City Master Plan both discussed the steps needed toward a more efficient, safer and “smart city” future. Transportation, innovation, information – all key terms in the future city.

Street Light Radar Traffic Detection and Counting - Validation and Application to Sustainable Communities (Poster)

lun, 01/20/2020 - 20:36
Street Light Radar Traffic Detection and Counting - Validation and Application to Sustainable Communities (Poster)
by Groszko,W.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5154 - INTERNET


The Nova Scotia Community College (NSCC) conducted a test of the accuracy of the LED Roadway Lighting (LRL) Toolless Sensor Platform (TSP) and its radar sensor for streetlights that detects the movements of vehicles. The NSCC Applied Energy Research Lab (AERLab) evaluated the accuracy of the TSP in a real-world test case on Tower Road, in Halifax, Nova Scotia. NSCC performed 11 sessions of manual data collection and observed 467 vehicular events. These manual observations, along with video recordings, were then compared to the TSP monitor log.

Parking Classification and Supply Modelling for Inter-Regional Truck Trips (Poster)

lun, 01/20/2020 - 20:13
Parking Classification and Supply Modelling for Inter-Regional Truck Trips (Poster)
by Nevland,EA; Gingerich,K; Park,PY.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5144 - INTERNET


A lack of safe and legal truck parking is considered as a major issue in the freight transportation industry. Hours of service (HOS) and electronic logging device (ELD) mandates, implemented to reduce fatigue, can force drivers to choose between parking illegally or driving longer than allowed. It is important to quantitatively assess the locations and extent of any truck parking deficiencies.

New Standards for Electric Vehicle Charging Station (EVCS) Construction Projects (Poster)

lun, 01/20/2020 - 19:30
New Standards for Electric Vehicle Charging Station (EVCS) Construction Projects (Poster)
by Smeeth,G.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5143 - INTERNET


Morrison Hershfield has developed all-new standards for electric vehicle charging station (EVCS) construction projects for the Ministry of Transportation Ontario (MTO) for use in public parking lots. These standard drawings and specifications have been designed with the intent to one day become Ontario Provincial Standard Drawings (OPSDs) and Ontario Provincial Standard Specifications (OPSSes). Ontario has become one of the first jurisdictions to develop standard construction drawings and specifications for the installation of public electric vehicle charging stations and associated infrastructure. The objective of these standards is to assist in the detail design of all future MTO EVCS projects to come.

Life-Cycle Cost Analysis and Performance Comparison of Asphalt Overlays on PCC Pavements in Wet-Freeze Regions of Canada (Poster)

lun, 01/20/2020 - 19:15
Life-Cycle Cost Analysis and Performance Comparison of Asphalt Overlays on PCC Pavements in Wet-Freeze Regions of Canada (Poster)
by Huyan,J; Oyeyi,AG; Tighe,S.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5137 - INTERNET


Long term pavement performance studies and continuous evaluations can help inform better rehabilitation strategies, thus suggesting more innovative rehabilitation designs. This research addressed the performance of asphalt concrete over PCC pavements on four LTPP data sites in the selected wet-freeze climate locations of the US and Canada.

Improving Trip Generation Estimates for Canadian Sites Using Aggregation and Extraction Techniques (Poster)

lun, 01/20/2020 - 18:57
Improving Trip Generation Estimates for Canadian Sites Using Aggregation and Extraction Techniques (Poster)
by Kenchappagoudra,M.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5133 - INTERNET


Trip generation analysis plays a vital role in determining the impact of new land use developments. Trips are generally estimated using regionally established trip rates from trip generation data collected over the period of time at specific land uses. However, some regions which do not have their own data usually rely on trip generation data published by other similar regions or on data collected by the Institute of Transportation Engineers (ITE), USA. Over the last 50 years, ITE has already collected data at over 26,000 sites in various parts of the USA and Canada for 173 different types of land uses. As only a small subset of data (~0.5%) is from Canada, there is a question as to whether that data could better represent Canadian sites. As ITE’s Trip Generation Manuals in the hardcopy format do not facilitate viewing or extracting data for specific regions (i.e. country or state) or the ability to aggregate data with local data, practitioners face a number of challenges in using ITE’s data for Canadian sites. To evaluate if data extraction and aggregation have any impact on improving trip generation estimates, data from Canadian and American sites were studied separately in order to analyze the statistical parameters by using the OTISS Pro analysis tools. The analysis revealed that 38% of studies with good data showed significant improvements in terms of fine-tuning standard deviation and regression coefficient (R2) after extracting Canadian sites data. Similarly, about 15% of studies with good data showed improved statistics by aggregating with the American site data. This further helped us to improve trip generation estimates by establishing appropriate trip rates and equations for Canadian sites. Based on this finding, this poster illustrates that by having a way to extract ITE’s data by regions or aggregate with the relevant local data could benefit Canadian practitioners performing qualitative trip generation analyses. It also emphasizes the importance of collecting more regional data.

Development of a Real-Time Internet-of-Things (IoT) Device to Prevent First Responders' Injuries Involved with Collisions (Poster)

lun, 01/20/2020 - 18:38
Development of a Real-Time Internet-of-Things (IoT) Device to Prevent First Responders' Injuries Involved with Collisions (Poster)
by Mohammadi,A; Park,PY; Asgary,A; Podloski,B; Liu,X; Mukherjee,A.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5119 - INTERNET


In-vehicle collision avoidance systems (e.g., automatic braking systems) are designed to protect drivers/passengers and pedestrians in the case of an emergency, but few studies have investigated systems designed to detect potential threats, such as fast approaching vehicles, and warn first responders that they need to take proactive evasive actions to avoid a collision.

Long Term Performance of Utility Trench Repairs in Low Traffic Residential Areas

lun, 12/23/2019 - 17:38
Long Term Performance of Utility Trench Repairs in Low Traffic Residential Areas
by Gallant,L; Miranda,R; Roufail,A.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5163 - INTERNET


Trenching through existing asphalt pavements is a necessity for the installation and maintenance of critical utilities such as water and waste water services in most urban areas. The following will outline observed performance of a recent trench restoration program and provide strategies for decreasing wasted material and improving standards for trench restoration to minimize ground disturbance and material waste in urban residential areas. Drawing on historical information and collected data from pavement condition assessments performed on trenched pavement sections of different ages, the analysis looks to highlight performance characteristics from a lifecycle cost and environmental impact perspective, and relate these findings to pavement management strategies in low traffic, residential areas.

Use of gINT Databases to Analyze 3D Spatial Slope Stability

lun, 12/23/2019 - 17:38
Use of gINT Databases to Analyze 3D Spatial Slope Stability
by Fredlund,M; Loubier,N; Myhre,T; Ivkovic,Z.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5162 - INTERNET


The use of database applications such as gINT to manage site borehole data in geotechnical consulting practice has become common. Such databases reduce the potential cost of future site investigations and allow valuable borehole information to be managed on a broader scale between multiple offices. Such data provides a valuable source for building lithology for 3D site models. When combined with topology, geotechnical shear strength laboratory data (such as shear box or triaxial data), and geotechnical design data an improved 3D conceptual model can be constructed. Such a constructed 3D site model forms a digital twin of the proposed geotechnical design for the real site and can be subjected to analytical simulations to determine if the proposed design meets specifications. Analysis such as slope stability, seepage, and stress/deformation can be performed on the conceptual model based on 2D profile slices or on the full 3D conceptual model. The movement to performing 3D stability analysis instead of the traditional 2D profile analysis has also heightened the need for fully formed 3D conceptual models of proposed geotechnical designs at sites. 3D slope stability analysis provides the benefit of improved rigor in the calculation of the factor of safety. Calculated 3D factors of safety are higher than 2D factors of safety and allow potential for cost savings on engineering designs that may be over-conservative. These new methodologies are providing advantages in the design of large engineered structures. The additional use of spatial sweeping slope stability analysis such as the multi-plane analysis (MPA) provide maps of factors of safety which further strengthen professional design. This paper presents an integrated approach to building lithology based on a gINT database and performing 3D spatial slope stability analysis. The new approach leverages the strength of existing borehole databases and provides more rigorous analysis to aid in the design of transportation structures such as embankments, retaining walls, and slopes adjacent to roadways.

Truck Platooning: Future of the Freight Industry

lun, 12/23/2019 - 17:38
Truck Platooning: Future of the Freight Industry
by Khan,MS.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5161 - INTERNET


This paper presents a state-of-the-practice of truck platooning technology, including policy, regulatory, and technological challenges and opportunities, and an envisioned timeframe for the implementation of the technology. Several demonstration projects on truck platooning conducted in the past have been highlighted, including the demonstration of a truck platooning system on September 14-15, 2017 on I-66 in Virginia, near Centerville. The I-66 demonstration was the most robust demonstration of truck platooning system considering that it was done on a highway in real traffic conditions, one of the busiest and most congested in the nation. Technological advances in automated vehicle technology, including truck platooning, are moving at a rapid pace. However, legislative and regulatory barriers need to be overcome for the widespread application and acceptance of this technology. Also, partnership among various stakeholders is crucial for the success of this technology.

Traffic Calming Achieved Using Street Beautification in the Village of Alton Streetscaping Project

lun, 12/23/2019 - 17:38
Traffic Calming Achieved Using Street Beautification in the Village of Alton Streetscaping Project
by O'Sullivan,DJ; Kabanov,S.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5160 - INTERNET


Queen Street and Main Street in the Village of Alton, in the Town of Caledon, ON serves two distinctly different purposes. For locals and tourists, Main Street and Queen Street serve as the main thoroughfares in a picturesque, historic village. Lined with shops, restaurants, schools, churches, bed and breakfasts, spas and other small businesses; their sidewalks are filled with pedestrians at peak times. For trucks and others passing through, it is a Regional Road that is the fastest way to get to other larger Towns and Cities; and is a primary trucking route. Thus, competing uses provide a challenge in road design. This situation is not unique, but rather reflective of the typical road configuration in many parts of Ontario, and in Canada in general. The challenge presents itself to ensure pedestrian safety for towns in which their main thoroughfare also serves as a brief slowdown in what is otherwise a high-speed connector road. It has been demonstrated in similar scenarios that reducing regulatory speed limits does not achieve the desired level of speed reduction. Providing supplementary traffic calming features, such as splitter islands, narrowed lane widths, and streetscaping has been used effectively to further lower average speeds and improve pedestrian safety. Alton is one village that was identified by the Region of Peel as target for traffic calming improvements. At the same time, it was also identified in the Township of Caledon as one of the targets of the “Six Villages Community Improvement Plan”, a revitalization strategy to provide improvements in streetscaping, pedestrian connectivity, signage and other beautification in target villages. Through extensive design collaboration, stakeholder consultation, community outreach and project delivery, unique streetscaping features were developed that achieved the dual purpose of beautification with traffic calming. The most challenging project constraints included working within a narrow, 15 to 20- meter-wide right of way without acquiring property; environmental impacts; heritage buildings and geometric design considerations. The project includes a Municipal Class Environmental Assessment (Schedule B), bridge replacement in a Provincially Significant Wetland; vegetated face retaining walls; traffic calming islands with plantings and a gateway feature; decorative streetlighting and pedestrian lighting; new lay-by parking; decorative concrete; and rest areas. The first construction phase is scheduled to be completed in Spring of 2019. The second phase commenced in the Spring of 2019 and is scheduled to be completed in December of 2019.

Towards a Flood Resilient Pavement System in Canada - A Rigid Pavement Design Approach

lun, 12/23/2019 - 17:38
Towards a Flood Resilient Pavement System in Canada - A Rigid Pavement Design Approach
by Oyediji,O; Achebe,J.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5159 - INTERNET


As climate change continues to threaten pavement infrastructural performance across the World, the need for sustainable solutions for pavement adaptation cannot be overstated. In Canada, flooding is a prominent climate hazard common to most Canadian provinces and adaptation of pavements to this hazard is desired. Based on previous investigations, concrete pavements are recorded as sustainable, resilient to flood hazards, and proposed to be a good pre-flood strategy. However, design properties need to be given utmost consideration to provide required resilience. This paper takes a design approach to examine the resilience of Jointed Plain Concrete Pavement (JPCP) to flood by modelling the performance of matrices of typical PCC pavement designs in Canada under a Representative Concentration Pathway RCP of 4.5 W/m 2 future precipitation scenario. The AASHTO Pavement ME Design program is used to simulate and predict performance changes under flood scenarios taking the Provinces of Ontario and Manitoba as case studies. In the Ontario study, mean flood damage peaked at 5.99% and 2.39% for collector and arterial JPCP pavement. In the Manitoba study, a total of 27 pavement classes was developed based on typical traffic, slab thickness and subgrade parameters common to the province. From the analysis of all pavement design classes, minimum and maximum damage observed was 0.31% and 3.03% respectively. The performance of the pavement designs classes in terms of flood resilience, service life and cost feasibility were analyzed with respect to traffic and subgrade conditions. Generally, results provided insight into the resilience and adaptive capacity of rigid pavements to climate flood hazards under Canadian climate condition.

The World’s Largest Metal Buried Bridge, Developed and Tested in Halifax Nova Scotia

lun, 12/23/2019 - 17:38
The World’s Largest Metal Buried Bridge, Developed and Tested in Halifax Nova Scotia
by Janusz,L; Newhook,J.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5158 - INTERNET


Steel buried bridges have been an integral part of the Canadian infrastructure for decades. In 2019, the largest steel buried bridge in the world, the Shammal Bridge Crossing, was built for a transportation application in Dubai, UAE utilizing the Ultra-Cor Corrugation. The structure had a span of 32.39 m and a rise of 9.039 m which led to a spot on the Guinness World of Records. The structure was instrumented with strain gauges and deflection prisms. The full-scale test results demonstrated that the performance of the structure is satisfactorily and meets exceeds the targeted demand to capacity ratio.

The Effect of Tire Under Inflation and Tire Anomaly on Pavement Structural Layers

lun, 12/23/2019 - 17:38
The Effect of Tire Under Inflation and Tire Anomaly on Pavement Structural Layers
by Soares,R; Haichert,R; Berthelot,C; Hanson,R.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5157 - INTERNET


Truck loading is an important factor in pavement design and road asset preservation. In addition to load weight spectra, roads are often subjected to uneven axle loading, lateral lane position wander, variable tire pressures and variable tire types. An important consideration in determining load impact is how the load traction state is distributed within a single vehicle and the impact on road primary response profiles. This paper is a study of the structural effects on the pavement layers caused by uneven tire load tractions as compared to a non-uniformly distributed loading which is often assumed for pavement design, asset management and performance prediction purposes. Tire load distribution measurements were collected from sensors installed on traffic data collection sites. Based on the real world traffic stream data collected, the frequency of tires with low contact pressures was established. A nonlinear stress-dependent three-dimensional finite element analysis was performed on a typical rural road structure under various climatic field state conditions. Shear strain profiles were analyzed by various heavy truck loadings within the road structure. These findings show shear strain increases of up to 30 percent around the underinflated tire cases when compared to a uniformly distributed loading across all field state climatic conditions and traffic speeds. Based on these results, it is recommended load enforcement; pavement management and design of roads consider load distribution among tires within axle groupings, tire footprint distribution and lane distribution in addition to total axle group weights.

The Bayview Corridor Project

lun, 12/23/2019 - 17:38
The Bayview Corridor Project
by Nykoluk,M.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5155 - INTERNET


Bayview Avenue is a major north-south arterial corridor under the jurisdiction of The Regional Municipality of York (York Region). Located in the Town of Richmond Hill, Ontario, the lower segment of the project corridor contains a principal tributary of the Rouge River that is fed, at this location, through significant steady state groundwater upwellings from the Oak Ridges Moraine Aquifer directly below. The principal tributary and former road side ditches now all contain significant brook trout population and habitat. The watershed is managed by the Toronto and Region Conservation Authority and the brook trout habitat is managed by Fisheries and Oceans Canada. York Region and the Town of Richmond Hill are undergoing tremendous growth in population and employment. In response to this growth, the Bayview Corridor Project improves mobility for all corridor users including motorists, pedestrians, cyclists and fish, with an innovative design enhancing the environment. The design of the project included extensive consideration of artesian conditions resulting from the Oak Ridges Moraine Aquifer and resulting brook trout habitat which contributed to the overall duration and complexity of the project.

St. Jacques-Pullman MSE Walls - Lessons Learned

lun, 12/23/2019 - 17:38
St. Jacques-Pullman MSE Walls - Lessons Learned
by Wilson,P; Essery,D; Taylor,TP.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5153 - INTERNET


Mechanically Stabilized Earth (MSE) structures are retaining walls with compacted soil that is reinforced with inclusions consisting of horizontally placed elements. MSE walls reinforced with steel elements are classified as inextensible. In some applications, the steel reinforcing elements connect to a facing component. The type of soil reinforcing and the corresponding facing will depend on the structure application. This paper will discuss the challenges associated with the design of tiered MSE wall application. The paper will explain what a tiered MSE wall is and how global and compound stability are performed. Also, it will describe the roles and responsibilities of the Geotechnical Engineer and the MSE Engineer and how the roles can overlap becoming shared responsibilities and to manage them. To demonstrate, a recent successful example project will be used to demonstrate these issues. The selected project is the St. Jacques-Pullman Interchange project located in Montreal, Quebec. The owner is the ministère des Transports du Québec (MTQ).

Review of Current Asphalt Cement Performance Grade Temperature Requirements in the Maritime Provinces

lun, 12/23/2019 - 17:38
Review of Current Asphalt Cement Performance Grade Temperature Requirements in the Maritime Provinces
by Barnes,CL; Keough,J; Feener,B; Marlin,A; Sweezie,M; Cheverie,T.
2019.
Transportation Association of Canada and ITS Canada 2019 Joint Conference and Exhibition.
CA6 ARH_10 2019A5152 - INTERNET


Performance Graded Asphalt Binders (PGAB) are selected under the Superpave system to provide superior performance according to the climate in which the pavement will serve. Rutting and fatigue resistance are provided at selected reliability levels by meeting various physical properties at corresponding site-specific high and low design pavement temperatures. These design temperatures have been previously determined using climatic data from across North America within the LTPPBind V3.1 software, and more recently can be assessed using LTPPBind Online. The high and low design pavement temperature and performance grades were determined using three approaches: LTPPBind Online; LTPPBind V3.1 model with climate data captured through the Road Weather Information Systems (RWIS) network utilized by the Maritime Provinces; and, using direct measurements of pavement temperature obtained using the RWIS network. Differences in the results were compared to assess possible changes arising from climate change effects and to update pavement temperatures required for asphalt binder testing under AASHTO M332 (“Standard Specification for Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test”) specification. LTPPBind Online was discontinued in the study due to differences observed in computing certain climate statistics compared to LTPPBind V3.1 and hand calculations based on the reported equations contained within both versions of the software. An average increase in the calculated high temperature grade requirement of 2.89°C was observed between results based on RWIS air temperature data versus approximately 25 years of Environment Canada climate data used within LTPPBind V3.1. However, a linear bias was observed when comparing the RWIS air temperature and LTPPBind V3.1 results which may have influenced the outcome. Pavement design temperatures developed using direct measurements at the RWIS stations were found to exhibit similar spatial variations to those developed using LTPPBind 3.1, but appeared to exhibit slight increases in both the high and low design temperatures over time of 0.2 °C and 3.28 °C, respectively. It is unknown if these differences are due to climate change effects or differences between the LTTPBind predictive model and direct temperature measurements. Design pavement temperatures should be evaluated annually using a shorter 10-year window of climate data to monitor the rate of change and predictions of future performance grade requirements.

Pages