The design and evaluation of infrastructure, including transportation systems, is based on climatic loads, such as wind, snow, rain, ice accretion and temperature. Currently, the climatic parameters in the codes and guidelines that are used for design, operation, and maintenance of transportation infrastructure systems are based on historical observations of climatic parameters. These climatic design data, thus, do not represent the future climatic conditions under climate change. This can lead to higher risks of failure and service disruption, and higher costs of rehabilitation and replacement of infrastructure assets. Therefore, there is a need to implement future projections of climatic data in the design and management of transportation systems to ensure their safety, serviceability, functionality, and durability and to avoid costly rehabilitation and strengthening, and to minimize the disruption of services. The selection and implementation of future climatic data in the design and management process of civil engineering infrastructure is a challenging task. As a preliminary step, it is of essential importance to understand the implications of climate change for different types of infrastructure systems to identify the potential risks that climate change can impose on them. In addition, it should be noted that changes in the future climatic data depend on several factors such as the climatic region, climate variable, climatic index statistics, future time horizon, etc. Moreover, the future climatic conditions largely depend on the human-induced greenhouse gas emissions scenarios that are described by representative concentration pathways (RCPs), which yield different levels of changes in the climatic design data. The selection of an appropriate RCP emission scenario is also a challenging task. This study provides insights into the implications of climate change for transportation infrastructure systems performance, and challenges for implementation of future climatic data in the design and management of infrastructure systems. The future projections for a number of climatic design parameters at various locations across Canada are presented in order to illustrate the implications of climate change for infrastructure systems.