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ABSTRACT 

Validating the accuracy of sensors and methods is an essential step in the collection of traffic speed 

data. The accuracy of automated speed data has been evaluated in both small- and in large-scale 

testing efforts using multiple technologies and methods, as documented in existing literature. In these 

studies, an important challenge is the creation of a ground truth speed data set that represents actual 

traffic history. Though inductive loops are standard for data collection, the use of non-intrusive 

traffic data collection technologies has become increasingly popular. Video-based detectors have 

demonstrated the ability to substitute conventional detection devices. Computer vision systems and 

video tracking software provide a wide variety of data, including conventional traffic parameters 

such as flow and velocity, while preserving a complete record of events. Though existing literature 

documents several issues associated with extracting vehicle speeds from video, the analysis of speed 

data, especially at the microscopic or individual level has been limited. The purpose of this paper is 

to evaluate the accuracy of a video-based detection system, comprised of commercially available 

video cameras and the Traffic Intelligence video analysis software system. To provide robust 

calibration, several camera orientations were tested along two types of facilities in Montreal, Canada. 

Video was collected on an urban arterial and a highway section, with cameras oriented both 

perpendicular and parallel to traffic direction. After calibrating the feature-tracking software, a semi-

automated vehicle tracking process was used to extract the vehicle speeds. Comparison to manually 

observed speeds was undertaken to evaluate the quality of the extracted speeds. Although the 

traditional mean error approach led to unacceptable results, a new approach was proposed for the 

evaluation of traffic detection technologies. The proposed segregated error approach divides the 

mean error values into separate values representing accuracy and precision errors. In doing so, 

several of the camera orientations exhibited precision error values within the accepted range speed 

data quality (5%). Even with large errors, video data can be calibrated to acceptable levels of 

accuracy so long as precision error is minimized through appropriate selection of camera position 

and orientation. 
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INTRODUCTION 

The collection and analysis of vehicular speed data are essential for any urban transportation system. 

Systems that collect accurate and consistent data are necessary to guide engineering decisions and 

treatments towards desired impacts in planning, construction, or operations [1]. The greatest 

challenge in any data collection campaign or large-scale test is the creation of “ground truth” data, or 

a “reference data set that represents the actual history of the traffic” [2]. The need for accurate data is 

critical as errors in this early stage will compound through analysis, skewing study outcomes and 

misleading decision making [3]. Data quality is paramount, and sensors must be sufficiently accurate 

for the specific data needs of any given project [3].  

Traditional data collection was limited to the use of inductive loops at fixed locations [1], to the point 

that loops became the “de facto standard” in many jurisdictions and are still widely used today [4]. 

Despite the performance of these systems, it is impractical and costly to maintain an adequate 

network of permanent collection locations in an urban road network [5]. Accordingly, the use of non-

intrusive traffic data collection technologies has become increasingly popular. Non-intrusive devices 

do not require access to the travel lane for installation, are often installed outside the right of way, 

and are safer to install and operate compared to other technologies [1]. Video-based traffic sensors 

are among the most promising non-intrusive technologies. Simple video cameras have the ability to 

substitute conventional detection devices [6], provide flexibility in mounting locations, and enable 

multiple lane detection [1].  

As manually processing video is resource demanding, “there is a high demand for automation of this 

task” [7]. Numerous systems have been developed for the automated extraction of traffic data from 

video footage using computer vision techniques. These systems are able to provide a wide variety of 

data, from conventional traffic parameters such as flow and velocity [1, 8], to new parameters such as 

object trajectories which can lead to information on vehicle manoeuvring and traffic conflicts [8, 9]. 

Perhaps the greatest benefit of video detection is data preservation. Unlike other detectors, video 

captures and stores the entire series of events as they occurred during data collection. As data needs 

evolve, video footage can be reanalyzed and data can be refined. 

While video detection has many advantages, before any system is relied on for traffic data collection, 

the accuracy of the system must be comprehensively verified to ensure data quality is maintained. 

With respect to existing literature, this research provides several key contributions. Most attempts to 

verify data quality have quantified error based on aggregated data, with little research focused on 

reasonable accuracy for individual vehicle data. Moreover, existing literature provides little guidance 

on acceptable accuracy for microscopic speed data. Finally, the methods of evaluating error have 

used a simplistic mean error approach without consideration for more robust analysis. The purpose of 

this study is to evaluate the accuracy of a video-based detection system, comprised of commercially 

available video cameras and the Traffic Intelligence video analysis software system. The objectives 

of this research are to; evaluate the accuracy of automated vehicular speed extraction, recognizing 

detection is a precursor to speed extraction; to propose a technique for evaluating separately the 

precision and accuracy of collected data; and to consider the required quality of video-collected 

traffic data. 

LITERATURE REVIEW 

Vehicle tracking through computer vision is a powerful tool that has seen implementation in several 

areas of transportation and safety research. Compared to conventional detection devices, vehicle 
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tracking techniques provide additional information in the form of vehicle trajectories [8]. Trajectories 

are representations of objects and their characteristics over both time and space. The nature of video 

detection allows vehicles to be tracked continuously over a road segment rather than being detected 

at a singular location. The analysis of vehicle trajectories can be used to automate otherwise 

resource-intensive studies, including vehicle manoeuvring [8], lane-changing, queuing patterns [6], 

automated incident detection [4], and driver behaviour [7]. One application pertinent to this study is 

conflict analysis. The use of surrogate safety measures has become increasingly popular in order to 

diminish reliance on crash data. Traffic conflicts are interactions between road users that are 

sufficiently close to real crashes and are physically and predictably related to crash events. For 

analysis, additional interpretation modules may be used to complement video detection and object 

tracking [9]. Once trajectories are extracted, interactions can be categorized as normal operation or 

conflict. Such techniques can be used to verify the safety improvements of engineering 

countermeasures without crash data using a before-after approach [10]. 

The increased sophistication of video detection does not preclude its use in substituting or 

complimenting traditional traffic detectors. Along with trajectories, video has the ability to extract 

traditional traffic parameters including flow, speed, headway, and density at both the microscopic, or 

individual vehicle, level [8] and the macroscopic, or corridor, level [6]. This vehicle data has 

applications in the calibration of traffic flow models [8] and conflict analysis. As detecting and 

extracting the position and speed of vehicles provides the basis for conflict analysis, verifying the 

parameters themselves will lend additional credibility to the technique. 

To determine speed, vehicles must first be successfully detected and tracked. In a study of video-

based vehicle classification, Gupte et al. [11] achieved a detection rate of 90%, while the system 

utilized by Messolodi et al. [12] exhibited an average count error of -5.2% operating in real time. 

Analysis of video-extracted speed data has been limited, especially at the individual level. This is 

potentially due to the amount of video that must be processed and the resources required to perform 

the analyses [6]. Additionally, methods used to assess speed data quality have lacked robustness. 

Coifman [8] extracted data for velocity, flow, and density collected by video in real-time on a 

freeway facility. Data was temporally aggregated to 5-minute intervals, resulting in 514 samples. 

When compared to ground truth from calibrated inductive loops, 100% of the samples exhibited 

speed error less than 10%, while 95% exhibited error less than 5%. Using the same data, Malik et al. 

[13] showed improvements when post-processing was used in place of real time analysis. Across the 

study, detection rates varied between 75% and 95%. In daylight conditions and using 5-minute 

aggregation periods, nearly all samples showed speed error of 5% or less. Data quality was found to 

vary with lane position relative to the camera. MacCarley et al. [2] did not strictly consider the 

accuracy of each observation, but claimed that 95% of all extracted speeds were “reasonable” when 

compared to speeds determined manually. 

Dailey [14] utilized individual vehicle data, but considered only 190 vehicles from 40 seconds of 

video data. While able to demonstrate that the mean error in speed detection across all observations 

was zero, if disaggregate records are considered, the individual mean error varied between -40% and 

80%. While the results are sound for estimating mean traffic speed, the technique is clearly not 

applicable to individual vehicles. Schoepflin [15] utilized a comparison of speed distributions created 

manually and by video data, noting that the distributions were approximately equal in mean and 

distribution. The authors claimed this indicates “certain equivalence” between the video data and 

actual events. Although errors of up to 20% were possible, averaging individual speeds over 20 

second intervals reduced variability by a factor of 10. These studies exemplify the issue with using 

aggregated data. Using temporally aggregated data for speed analysis effectively eliminates the 
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influence of higher and lower speed vehicles, and aggregation can obscure the performance of a 

device exhibiting compensating errors [5]. The reduction in error due to aggregation clearly 

demonstrates the compensating errors present in video extracted speeds. 

Several notable issues exist with regard to extracting vehicle speeds from video. Vehicle detection 

may be hindered by with false or missed detections. False detections involve the tracking of any 

object that is not a road user. Shadows cast by vehicles in adjacent lanes are particularly problematic 

[2]. Vehicles can be missed if they are partially or fully occluded by other vehicles. Occlusions can 

also disrupt feature tracks, creating inaccurate trajectories and speed estimations [9]. Vehicle position 

relative to the camera may affect data quality. Vehicles that are further from the camera occupy a 

smaller number of pixels, may not show distinctive features, and may be difficult to identify and 

track, leading to potential variability in speed data [6]. Vehicle tracking is inhibited by an 

overestimation of derivative values. This means that the “distance between two measured points is 

systematically biased towards longer distances, which results in speed overestimation” [7].  

Regardless of its successes, if video detection is to be considered a reasonable alternative to other 

devices, the data must meet similar accuracy requirements. Bahler [1] indicated that inductive loops 

exhibiting count errors less than 4% over 1 hour aggregation was of sufficient quality [5]. The same 

study demonstrated that most commercially available non-intrusive traffic detectors were able to 

provide counts within 3% of actual, and speeds within 8% [1]. Several issues exist with regards to 

existing literature on data requirements.  Existing literature provides little guidance on acceptable 

accuracy for microscopic speed data. Most attempts to verify data quality have quantified error based 

on aggregated data, with little research focused on reasonable accuracy for individual vehicle data. 

Additionally, there has been no consideration for evaluating device precision and accuracy 

separately. With this considered, researchers should endeavor to find detectors that “approach the 

ideal, but fall within some level of tolerance that may vary from application to application” [3]. 

METHODOLOGY 

Site Selection, Instrumentation, and Data Collection 

The quality of video-extracted traffic speeds was evaluated in both a highway and arterial 

environment. Arterials and highways provide variation in geometry and, importantly, in traffic 

parameters such as speed and volume. Autoroute 15 (A15) in Montreal, Quebec, Canada was the 

selected freeway facility. The A15 is a major north-south corridor and one of the most heavily 

travelled highways in Montreal, with an AADT of approximately 90,000 [16]. At the testing location, 

four lanes are present in each direction, and the posted speed limit is 100 km/h. Boulevard 

Taschereau in Brossard, Quebec, Canada was the selected arterial facility. Taschereau runs east-west 

on the South Shore of Montreal, connecting two major bridges and servicing important highway 

connections to the island of Montreal. The section chosen for this study featured 6 lanes in the 

westbound direction with a posted speed limit of 50 km/h.  

A GoPro Hero 3 video camera was used to collect video at both sites, and was set to record 720p 

video at 30 frames per second. The camera is capable of recording up to 6 hours of video on a single 

battery charge. The camera is highly portable and provides flexibility in mounting location. Site 

selection ensured the presence of existing roadside infrastructure for camera installation. At the A15, 

a pedestrian overpass structure was utilized, allowing the camera to be mounted closer to the 

roadway compared to other potential locations. The video camera was attached to the guardrail on 

the overpass using a specialized mounting system, shown in Figure 1a. At Taschereau, the camera 
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was mounted to a 20-foot telescoping fibreglass surrogate pole, which was subsequently fixed to the 

base of existing luminaire poles, as shown in Figure 1b. The close proximity of adjacent poles 

allowed for the collection of simultaneous video data from multiple orientations. 

In addition to multiple sites, multiple camera orientations were utilized to analyze the effect of 

orientation on reported accuracy. Knowledge of accuracy with respect to orientation is vital because 

the ability to utilize multiple orientations improves flexibility and provides more mounting options, 

which may be highly beneficial for data collection in the urban environment. Three camera 

orientations were used at each site. The first was a perpendicular orientation, were the camera was 

positioned over the roadway looking directly across the lanes of travel. It was believed that this 

orientation would provide the most accurate speeds, as vehicles are as close as practically possible to 

the camera. Two parallel orientations were also tested. A parallel orientation, were the camera is 

positioned looking down the roadway, is beneficial if more information, such as vehicle trajectory, is 

required. This orientation was used with a speed extraction zone approximately 10 m from the 

camera (parallel close) and with a speed extraction zone approximately 20 m from the camera 

(parallel far). At least 30 consecutive minutes of video was recorded for every orientation at each 

site. The locations of the cameras at and their respective study areas are provided in Figure 2. 

Feature-Based Tracking Algorithm 

Data extraction was automated using computer-vision software Traffic Intelligence [17], an open 

source project developed at Ecole Polytechnique in Montreal, Canada. The program enables users to 

analyze video, extract vehicle trajectories, and evaluate trajectory data using several built-in tools. 

The primary tool is a feature-based tracking algorithm that outputs trajectories for all moving objects 

in the video frame, which are mapped to real-world measurements using a homography matrix to 

convert object positions from the image (pixels) to a surface (meters). The extraction and grouping of 

trajectories into corresponding vehicles is a crucial step. First, moving points, or features, are 

identified and tracked between consecutive frames. Features are grouped into objects based on 

several criteria, and are stored in a database with their two-dimensional coordinates and 

instantaneous velocity values for each video frame.  

The main issues with feature-based tracking are over-segmentation and over-grouping of trajectories. 

Over-segmentation occurs when a single object is assigned multiple trajectories. This primarily 

occurs when vehicle geometry creates several distinct feature groups. Over-segmentation can lead to 

inflated vehicle counts but does not affect speed accuracy since grouped features still belong to a 

single vehicle. Over-grouping occurs when multiple vehicles are defined by a single trajectory, due 

to the proximity of neighbouring features.  The over-grouping of objects will lead to inaccurate speed 

calculations and false volume counts [18]. Given these issues, the most important parameters within 

Traffic Intelligence are related to the criteria used for grouping features into objects. In order to 

accurately apply Traffic Intelligence, the key parameters were calibrated by ensuring extracted 

counts accurately matched manual counts over a sample of the collected video. 

Data Extraction and Analysis 

Data was extracted following a semi-automated approach. The extraction of speeds was completely 

automated through the computer-vision software. Virtual speed boxes were added to the video frame, 

where extracted trajectories were evaluated and instantaneous object speeds were averaged to obtain 

a single speed for each object. Speed boxes were created for two lanes, for each orientation, at both 

sites, yielding a total of 12 study areas. The video output provides an object number and trajectory 
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overlaid on the corresponding vehicle. Ground truth comparison speeds were determined manually. 

Vehicles were tracked through the distance corresponding to the virtual speed box. Using the length 

of the speed box and the video frame rate, the speed of the vehicles could be calculated. Manual 

speeds were matched one-to-one with the extracted speed using the corresponding object number. 

Analysis of the extracted speeds was completed in two steps. The mean error for the extracted speeds 

was calculated for every orientation at each site. The use of mean error is consistent with analysis 

demonstrated previously within existing detector testing literature. However, this study contends that 

mean error is insufficient at capturing the true behaviour of detectors. Therefore, to fully understand 

the behavior within the error present in the extracted data, total error should be divided into precision 

and accuracy error. A simple method for segregating error in this way is described in the results 

below. Figure 3 demonstrates the differences between precision and accuracy error for speed data 

and is further explained in the following section.  

RESULTS 

Mean Error Approach 

A sample of 100 consecutive vehicles was selected in each of the 12 study areas, for which the mean 

error was calculated for the extracted speeds. The mean error is the simplest way to quantify error in 

speed detection and is widely used in existing studies. The error was calculated for each individual 

record by normalizing the difference between the extracted and observed speed. These individual 

errors were averaged across the sample to yield the mean error, according to 
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Mean error results are presented in Table 1. Extracted speeds exhibit significant difference when 

compared to manually observed speeds at many of the study areas. At Taschereau, the mean error in 

five of the six cases exceeds 10%, with the sixth case exhibiting an error of 8%. For a single camera 

orientation, variation between the lanes is observed. For the A15, the mean error values are 

consistently lower with less variation between the lanes (between 3% and 12%). The results of the 

mean error approach indicate that video extracted speeds do not fall within acceptable limits for 

traffic detectors at Taschereau. For the A15, the video data is of acceptable quality for exactly half of 

the study areas. In general, it appears that the quality of video extracted speed data is not acceptable. 

Data Visualization 

To better understand the behaviour of the detector and the characteristics of the errors, and to observe 

trends across lanes and orientations, the extracted speeds were plotted against the observed speeds. 

These plots utilize a diagonal line to indicate the ideal detector performance (that is, data from an 

ideal detector follows the line y=x). Data points over the line indicate overestimation of speed, while 

points below the line indicate underestimation. This data visualization is potentially powerful in 

identifying general trends within the data.  

The results for all 12 study areas are presented in Figure 4 and Figure 5.Visually, it was determined 

that the mass of the observations tended to fall above the ideal diagonal line, indicating a general 

overestimation, consistent with previous research [7]. To formally investigate this observation, a 

trend line was added to the plots. The slope of the trend line was held to be 1, such that it would be 



  8 

parallel with the ideal diagonal line. Using this technique, the intercept of the trend line can indicate 

the direction and magnitude of the general estimation error, while the R-squared value can indicate 

the precision of the extracted speeds independent of any over- or under-estimation. Based on the 

intercept values alone, 11 of the 12 study areas exhibit overestimation.  

While the intercept provides insight into the accuracy of the extracted speeds, the R-squared value 

for each trend line reveals the precision, or repeatability of each extracted speed measurement, with a 

higher R-squared indicating a higher degree of repeatability. In general, the R-squared values for the 

perpendicular camera orientation were the highest in all cases, ranging between 0.77 and 0.89. The 

parallel close orientation had the second highest repeatability, with R-squared values between 0.26 

and 0.63. The worst results were for the parallel far orientation, with R-square values near zero. 

Fixing the slope to be equal to 1 indicates an assumption that over- or underestimation is independent 

of operating speed; an assumption that holds as the lines provide sufficient data fit. 

Segregated Error Approach 

The visualization exercise proved to be powerful by allowing observation of both precision and 

accuracy as separate phenomenon through the use of the R-squared and intercept values. However, it 

would be extremely beneficial to transform these values into values of precision and accuracy error. 

Utilizing normalized error values maintains the notation utilized in existing literature, and provides 

an intuitive and communicable comparison between sites and camera orientations. The y-intercept of 

the fitted lines quantifies the difference between the line-of-best-fit and the ideal detector line, and 

indicates the magnitude of difference between the mean of the extracted speeds and the mean of the 

observed speeds. The precision error is quantified similarly to the mean error, with the addition of a 

correction factor equal to the y-intercept of the fitted line. The remaining error can be attributed to 

device accuracy, as the normalized error between the line-of-best fit and the ideal line at every data 

point. These values can be calculated simply as  
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The segregated errors for all sites and orientations are presented in Table 2. If only the mean error 

values are considered, patterns are difficult to observe. For Lane 3 at both sites, the perpendicular 

orientation produced the lowest error, the parallel close exhibiting more error, and parallel far 

exhibiting the most. However, this pattern does not hold for Lane 2 at either site. Based only on the 

mean error, the quality of video extracted speed data would not be acceptable as discussed 

previously. 

However, patterns in the data do emerge for the segregated errors, especially the precision error. The 

perpendicular camera orientation consistently produced the lowest precision error, followed by the 

parallel close orientation and the parallel far orientation, with the highest precision error. 

Additionally, the precision error is observed to be nearly equal for both lanes within each orientation. 

The perpendicular orientation resulted in the most precise extracted speeds. At Taschereau, the data 

was collected simultaneously for each lane and each orientation. Therefore, the samples at 

Taschereau contain the same vehicles, and differences in observed speeds across study areas are 

negligible. The results from Taschereau mirror the trends in precision data, and error was lowest for 

the perpendicular orientation (4%), followed by parallel close (10%), and parallel far (12% and 
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13%). Collecting data simultaneously and using the same vehicles across each sample data set further 

validates the results. 

Patterns for accuracy error are not as clear. The accuracy error is typically not equal across lanes at a 

single site. When considering camera orientation, it is clear that the parallel far orientation typically 

produced the lowest accuracy error. This indicates that the repeatability of speed measurements is 

much better when the speed extraction zone is close to the camera (i.e. either the perpendicular or 

parallel close orientations). However, the speed that is averaged across multiple consecutive vehicles 

will be much closer to the true mean speed when the parallel far orientation is utilized. In other 

words, the overestimation problem is less prevalent for more distant objects. 

Discussion 

While these general trends are easily observed, differences between sites are also of interest. The 

precision error at the A15 was consistently lower than the errors from Taschereau. While the errors 

for the perpendicular orientation were approximately equal, the errors for both parallel configurations 

at Taschereau were between 3% and 5% higher. Some variation is likely explained by difference in 

camera setup and distance to speed extraction zone. At Taschereau, the camera’s location on the side 

of the road limited skewed the orientation to be not exactly parallel to the lanes. At the A15, 

mounting to the overpass structure allowed for true parallel orientations. The camera mounting 

height also varied between sites. The pole used along Taschereau has a maximum height of 20 feet 

whereas the overpass height along the A15 was approximately 25 feet above the road surface. At 

least a portion of the variation can be attributed to these differences. 

The results above indicate that precision error is highly dependent on camera orientation and is 

predictable in nature. Precision error is dependent only on the ability of the software to recognize and 

group features and to track objects throughout the video. This ability is constant for a given camera 

orientation. For example, using a perpendicular orientation, the relative ease of object tracking is 

high, because objects are closest to the camera, features are distinct, and pixels represent a smaller 

real-world distance. In this situation repeatability is high, and even if errors are made in calibrating 

the tracking or speed extraction modules, the error will manifest in all speeds. In other words, even 

inaccurate speeds will be consistently inaccurate. In contrast, accuracy does not appear to be 

predictable. Accuracy is more dependent on the parameterization of the software and less dependent 

on object tracking. Homography and software calibration must be completed for each camera 

installation, leading to errors that are unique for each individual orientation. This helps to explain 

why patterns are less visible for accuracy error. 

Although the perpendicular orientation yields more precise vehicle speeds compared to the parallel 

close angle, both orientations serve a purpose in different data collection applications. The 

availability of roadside structures suitable for video data collection is a deciding factor in many 

situations. One of the most important issues with the perpendicular orientation is the occlusion that 

occurs when vehicles in separate lanes travel through the extraction zone simultaneously. If the 

recording system cannot be installed high enough above the road surface, a substantial number of 

vehicles can be missed, resulting in a false representation of the traffic environment. Alternately, the 

parallel orientation is necessary when vehicle interactions and lateral movements need to be 

observed. Ideally, both orientations should be used to provide complementary data, offering 

researchers a more detailed picture of the traffic environment. 
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CONCLUSIONS  

This study evaluated the quality of disaggregate vehicle speed data obtained from video-based 

detection and feature-tracking software. Multiple camera orientations were tested along two lanes of 

arterial and freeway facilities. The first objective of this study was to evaluate the accuracy of 

automated extracted vehicular speeds. The traditional mean error approach indicated that the video 

extracted speeds were not within an acceptable range for use as a data collection method. In order to 

better understand the nature of the errors, the second study objective was to propose a technique for 

evaluating separately the precision and accuracy of collected data. Although the traditional mean 

error approach did not lead to acceptable results, a new approach was developed for the evaluation of 

traffic detection technologies. The proposed segregated error approach divides the mean error into 

separate values representing accuracy and precision error. In doing so, several of the camera 

orientations exhibited precision error values within the accepted range for data collection 

technologies (5%). 

Both of these results are especially important from the perspective of the third study objective; to 

consider the required quality of video-collected traffic data. In the past, a single error value was used 

as a threshold for acceptable data quality. Under the proposed scheme, it is clear that the use of a 

single value is a narrow-minded approach to data collection. The results of this research show that, in 

general, precision error is small and predictable, while accuracy error may be neither. This is crucial, 

because accuracy can be calibrated for in video-extracted speeds. Although video data displays a 

total mean error much greater than 5% in most cases, the precision, or repeatability, of video 

extracted speeds is often within reasonable limits for data quality. This method provides the ability to 

compensate for the over-estimation problem present in many video-based detection systems. 

Importantly, even devices exhibiting a high accuracy error can be calibrated to provide consistent and 

accurate speeds, if the y-intercept of a fitted line is used to adjust all speed measurements. 

The segregated error approach can guide selection of devices with high levels of precision regardless 

of the level of accuracy. This result has implications for the testing of new traffic detection 

technologies and the selection of technologies for the process of traffic data collection. Even with 

large errors, video data can be calibrated to acceptable levels of accuracy, so long as precision error 

is minimized through appropriate selection of camera position and orientation. The greatest benefit of 

the segregated error approach is that it allows for data collection by devices that might be dismissed 

as inaccurate by traditional approaches. In future studies, the validity of calibrating detection devices 

using this approach will be considered. Importantly, more testing sites should be utilized to ensure 

that the patterns demonstrated herein apply universally. The behaviour of more detection 

technologies should be evaluated with respect to the segregated error approach. Although the 

proposed approach proved effective, the method should be compared to other statistical approaches, 

and Pearson’s correlation coefficient should be used to confirm linearity of video extracted speeds. 
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TABLE 1  Mean Error Values for Video-Extracted Speeds 

 
  Mean Error 

 Lane 2 Lane 3 

Taschereau     

   

Perpendicular 0.16 0.08 

Parallel close 0.22 0.12 

Parallel far 0.15 0.15 

   

A15     

   

Perpendicular 0.08 0.03 

Parallel close 0.05 0.05 

Parallel far 0.10 0.12 

      

 

TABLE 2  Segregated Error Values for Video-Extracted Speeds 

  Lane 2 Error Lane 3 Error 

  Mean Precision  Accuracy  Mean Precision  Accuracy  

Taschereau             

       

Perpendicular 0.16 0.04 0.12 0.08 0.04 0.04 

Parallel close 0.22 0.10 0.12 0.12 0.10 0.02 

Parallel far 0.15 0.12 0.03 0.15 0.13 0.02 

       

A15             

       

Perpendicular 0.08 0.03 0.05 0.03 0.03 0.00 

Parallel close 0.05 0.05 0.00 0.05 0.05 0.00 

Parallel far 0.10 0.09 0.01 0.12 0.10 0.02 
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               (a)                   (b) 

 

FIGURE 1  Mounting configurations for freeway (a) and arterial (b) environments 

 

 

    
(a)           (b) 

 

FIGURE 2  Camera orientations and study areas for (a) arterial and (b) highway locations  
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FIGURE 3  Demonstration of error segregation 
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      (a)        (b) 

   
      (c)       (d) 

   
      (e)       (f) 

 

FIGURE 4  Detected and true speed for Taschereau, perpendicular Lane 2 (a) and Lane 3 (b), 

parallel close Lane 2 (c) and Lane 3 (d), and parallel far Lane 2 (e) and Lane 3 (f) 
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      (a)        (b) 

   
      (c)       (d) 

   
      (e)       (f) 

 

FIGURE 5  Detected and true speed for Autoroute 15, perpendicular Lane 2 (a) and Lane 3 (b), 

parallel close Lane 2 (c) and Lane 3 (d), and parallel far Lane 2 (e) and Lane 3 (f) 

y = 1x + 7.18 

R² = 0.7656 

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

D
e
te

c
te

d
 S

p
e
e
d

 (
k

m
/h

) 

True Speed (km/h) 

y = 1x + 2.11 

R² = 0.8226 

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

D
e
te

c
te

d
 S

p
e
e
d

 (
k

m
/h

) 

True Speed (km/h) 

y = 1x + 3.56 

R² = 0.3335 

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

D
e
te

c
te

d
 S

p
e
e
d

 (
k

m
/h

) 

True Speed (km/h) 

y = 1x - 2.97 

R² = 0.6287 

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

D
e
te

c
te

d
 S

p
e
e
d

 (
k

m
/h

) 

True Speed (km/h) 

y = 1x + 3.76 

R² = -0.243 

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

D
e
te

c
te

d
 S

p
e
e
d

 (
k

m
/h

) 

True Speed (km/h) 

y = 1x + 7.15 

R² = -0.146 

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

D
e
te

c
te

d
 S

p
e
e
d

 (
k

m
/h

) 

True Speed (km/h) 


