
1 
 

 
 
 
 
 

Using Artificial Neural Network (ANN) for Prediction of Climate Change Impacts on Jointed Plain 
Concrete Pavement 

 
 
 
 

Mohammad Shafiee, Ph.D., P.Eng. 
Research Officer 

Construction Research Centre 
National Research Council Canada 

 
 
 
 

Omran Maadani, Ph.D. 
Research Officer 

Construction Research Centre 
National Research Council Canada 

 
 

Eslam Fahiem, MSc 
Graduate Student 

Carleton University 
 

 

 

 
Paper prepared for the Innovations in Pavement Management,  

Engineering and Technologies session of the 2021  
TAC Conference & Exhibition 

 
 

 

 

 

 



2 
 

Abstract 

Driven by human influence, Canada’s climate has warmed and will warm further at a rate of double the 
global average. Climate change phenomenon, commonly known as ‘global warming’, is expected to 
cause irreversible temperature rise as well as other environmental anomalies that could affect 
transportation infrastructures. With continued growth in greenhouse gas (GHG) emissions in future, 
rising temperatures will have consequences on the short and long-term performance of the Jointed 
Plain Concrete Pavement (JPCP) systems. In this study, climate change impact on a typical JPCP structure 
was modeled using Pavement ME Design (PMED) software. The PMED modeling results were fed into a 
two-layer feed-forward network with sigmoid hidden neurons and linear output neurons. Results of this 
study indicated that the developed ANN models are effective and capable of accurately predicting the 
potential and relative impact of climate change on JPCP. 
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 Introduction 

The interaction of the ambient temperature, solar radiation, cloud cover, precipitation, and depth of 
water table with the pavement materials and the traffic loading is usually known to be a complicated 
phenomenon. Particularly, transverse cracking in JPCPs is extremely sensitive to climate condition. Many 
studies have confirmed that when top of the slab is warmer than the bottom of the slab, normally 
during daytime, repeated traffic loading can initiate bottom-up transverse cracks which can become 
visible on the surface over time. However, when bottom of the slab is warmer than the top of the slab, 
normally during nighttime, top-down transverse cracks are often initiated under traffic load repetitions 
[1]. It is interesting to note that, JPCP paving in hot days may create permanent built-in temperature 
gradient which is even more favorable for future top-down cracks. In fact, in addition to the heat 
supplied from intense solar radiation during hot days, the fresh Portland Cement Concrete (PCC) also 
generates hydration heat during hardening process. As a result, top of the slab remains warmer than the 
bottom during solidification period and a positive temperature gradient or a Zero-Stress Temperature 
(ZST) gradient gets locked into the PCC. Consequently, upward curling with increased stress at top of the 
slab occur anytime that in-service temperature gradient drops below ZST [2]. 

Previous studies have shown that reducing the risks of climate change on pavement performance 
requires scaled-up design tools based on adequate Mechanistic- Empirical model. Owing to the 
Enhanced Integrated Climatic Model (EICM) within Pavement ME Design (PMED) software, which can 
simulate the material behavior due to climatic variations, pavement designers can better predict the 
relative effect of climate change on JPCPs. With direct control over many climatic inputs of the project, 
designer have been able to quantify the structural performance of JPCP by incorporating credible 
quantitative estimates of future climate change. However, the extensive amount of detailed material, 
foundational, traffic and environmental inputs presents a challenge for many small road agencies 
wishing to implement the PMED. Nevertheless, by virtue of advance computing systems such as Artificial 
Neural Network (ANN) techniques, broadly developed after human brain’s neural networks, the 
patterns of climate change’s impacts can be simulated.  

Previous case study in Minnesota showed that ANN is a good candidate to predict flexible pavement’s 
layer moduli in the future under climate change. Using this approach, researchers observed that their 
developed ANNs were capable of learning the Falling Weight Deflectometer (FWD) measurements and 
corresponding influential inputs [3]. In another study conducted at University of Toronto, machine 
learning algorithms were used to predict the effect of climate change on damage accumulation for 
flexible pavements. Using this method, researchers captured the difference between maintenance 
policies before and after climate change as well as the corresponding added costs [4]. Elsewhere, 
machine learning techniques were used to optimize pavement management strategies for a diverse 
range of possible future scenarios [5]. Current paper investigates an innovative approach using trained 
ANN to predict climate change effect on the JPCP performance for a typical cold region pavement in 
Winnipeg, Manitoba.  

Methodology 

As illustrated in Figure 1, ANN was employed in this study with the objective to predict the slab cracking 
and joint faulting under future climate change. First, series of simulations were carried out using the 
AASHTOWare Pavement ME Design (PMED). Later, ANN was trained and evaluated using outputs from a 
large number of PMED runs with projected climate data. Climate change data was obtained from the 
outputs of the Canadian Regional Climate Model (CanRCM4) [6] developed by the Canadian Centre for 



4 
 

Climate Modelling and Analysis (CCCma) under Representative Concentration Pathway (RCP) 8.5. This 
high emission scenario reflects the most likely ‘business as usual’ emission trajectory. Climate data 
consisted of mean hourly temperatures, wind speed, percent sunshine, precipitation, relative humidity 
and water table depth. As shown in Table 1, one baseline and three future scenarios for the City of 
Winnipeg, Manitoba, were set up to investigate the relative impact of climate change on JPCP 
performance. As depicted, Mean Annual Air Temperature (MAAT), Mean Annual Precipitation (MAP), 
and estimated ZSTs are all expected to rise in view of projected changes in climate. By definition, the ZST 
is illustrates the average temperature in the PCC slab at the time the concrete sets and is empirically 
calculated based on the mean monthly temperature of the month of construction.   

 

 

Figure 1- Modeling the Climate Change Impact on Pavement Performance 

 

Table 1- Selected Climate Change Scenarios 

Scenario 
Analysis 
Period 

 Mean Annual Air 
Temperature (℃) 

 Mean Annual 
Precipitation (mm) 

Estimated 
ZST (℃) 

Baseline 1995-2020 6.31 597.66 37.6 

Short-term future 2025-2050 8.27 617.22 38.5 

Medium-term future 2050-2075 10.56 636.02 41.6 

Long-term future 2075-2100 12.79 701.80 44.4 

 

A four-lane unreinforced cast-in-place JPCP with doweled transverse joints and tied shoulders was 
analyzed in this study. The pavement design life was assumed to be 25 years for the purpose of this 
impact study. A series of sensitivity analysis were conducted by varying five key input parameters 
including Annual Average Daily Truck Traffic (AADTT), the thicknesses for Portland Cement Concrete 
(PCC) and Granular Base Course (GBC), and the resilient modulus for GBC and subgrade (SG), as shown 
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in Table 2. Other controlling variables were held constant as depicted in Table 3 [7]. It is however 
important to note that the abovementioned conditions are typical for Level-3 (default) analysis. Overall, 
a total of 972 case studies were modeled using the latest release of the AASHTOWare PMED, version 
2.6.0.  

 

Table 2- Different Sensitivity Analysis Cases 

Variable Range of Values 

AADTT 5000, 7500 and 10000 

PCC Thickness (mm) 170, 180 and 190 

GBC Thickness (mm) 150, 200 and 250 

GBC Resilient Modulus (MPa) 150, 200 and 250 

SG Resilient Modulus (MPa) 30, 50 and 70 

 

Table 3- Design input properties for AASHTOWare PMED 

Design Feature Input Parameter Value 

PCC Properties 

28-day Modulus of Rupture (MPa) 5.6 

Coefficient of Thermal Expansion 
(mm/mm °C x 10-6) 

7.8 

Heat Capacity (joule/kg-Kelvin) 1172.0 

Unit Weight (kg/m3) 2320.0 

Thermal Conductivity (watt/meter-
Kelvin) 

2.16 

JPCP Design 

Permanent curl/warp effective 
temperature difference (°C) 

-5.6 

Dowel diameter (mm) 32 

Erodibility Index 5 

Pavement 
Performance 

Initial IRI (m/km) 1.5 

Reliability 90% 
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In an attempt to reproduce and model climate change impact on performance trends, a set of input 
vectors inserted in one matrix and a set of associated target vectors inserted into another were defined 
for all cases. As part of the multidimensional mapping mechanism, two-layer feed-forward networks 
with sigmoid hidden neurons and linear output neurons were created accordingly. Figure 2 shows the 
schematic diagram of the ANN model implemented in this study. As can be seen, seven types of input 
variables were introduced in the models among which were the MAAT and MAP variables. Input layer 
holds neurons receiving inputs directly from outside the network, as shown in the figure. The input layer 
is followed by the hidden layer with fairly arbitrary number of hidden neurons and the so-called transfer 
function in the hidden layer is sigmoid by default. As can be seen in Figure 2, the next layer of the 
network is the output layer of linear neurons. It is worth noting that two separate models, each with one 
output neuron, were developed for faulting and cracking.  

 

 

Figure 2- Diagram of the ANN modeling structure 

 

Following the general workflow for a multilayer network, each group of dataset was first divided in three 
subsets. The first subset was used for training and included 70 percent of the entire data randomly 
selected in each group. Training subset is essential for computing the gradient and updating the network 
weights and biases. Subsequently, both the second and third subsets used for network validation and 
testing purposes, respectively, consisted of 15 percent of the entire data. When training, the error on 
the validation set is continuously checked. Basically, the validation error will normally decrease as long 
as the network is in the process of learning the targets, or more specifically, during the initial phase of 
training. However, as soon as the network begins to overfit the data, the error on the validation set 
typically begins to rise. Thus, the network weights and biases are set at the point where the validation 
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error is minimum. In this study, the default criteria for network training termination pertaining to the 
magnitude of the gradient of performance and the number of validation checks, was applied during the 
process. By default, training phase automatically stopped after six unsuccessful attempts to reduce the 
validation error or once the gradient magnitude became less than 1e-5.  For this function approximation 
problem, Levenberg–Marquardt (L-M) backpropagation algorithm, which uses Jacobian calculations, was 
adopted to train the networks. This L-M algorithm, supported by MATLAB’s built-in functions, was 
chosen as it is known to be the fastest and most efficient approach for training medium-sized networks 
with up to a few hundred weights. It is worth noting that due to the random sampling scheme, 
retraining may yield different results each time. In other words, each retraining session normally starts 
with different initial weights and biases. Also, the procedure of random data division results in loading 
different training, validation and testing datasets in each retraining session. 

Results and Discussions 

Figure 3 (a) and (b) show the faulting and cracking for all evaluated cases, respectively. As can be seen, 
warmer climate in future is generally expected to increase the risk of faulting. This can be partially 
attributed to the ZST’s effect on the joint behavior. As stated in the MEPDG, lower ZST leads to the 
tighter joints over time because the joints open when the temperature within the slabs falls below the 
ZST. Therefore, increase in ZST may be associated with larger faulting over the life of the pavement. In 
fact, chances of higher ZSTs could be greater in view of climate change, as previously shown in Table 1.  

However, climate change seems to be causing less fatigue cracking relative to the baseline scenario 
according to the examined cases. While a constant permanent curl/warp is present in the slab, effect of 
climate change on transitory curling and transitory warping is obviously responsible for such impacts. As 
per the MEPDG, climatic factors including solar radiation, cloud cover, precipitation, ambient 
temperature, and depth to water table can directly influence the temperature and moisture state in 
pavement and subgrade and eventually the critical stresses involved [1]. 

 

 

(a) 
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(b) 

Figure 3- Comparison of PMED-predicted (a) faulting and (b) cracking distresses 

 

Comparing the averaged distress values at different input levels also revealed the sensitivity of faulting 
and cracking to AADTT, concrete thickness, base thickness, base resilient modulus and subgrade resilient 
modulus. It is evident from Figure 4 that increasing the PCC slab thickness from 170 mm to 190 mm can 
decrease the cracking by almost 60.5% and increase the joint faulting by almost 7.6%. Hence, thicker 
PCC slabs make the JPCP less prone to cracking, but slightly more prone to faulting. According to the 
MEPDG, increasing the PCC slab thickness without corresponding increase in the dowel diameter will 
reduce the effective area of the bar relative to the slab thickness which will lead to higher risk of 
faulting. It is also clear from the figure that higher traffic load will cause further increase in both faulting 
and cracking distresses on average by 39.8% and 50.9%, respectively. Within the examined range of GBC 
properties, it was found that both faulting and cracking were more sensitive to the GBC thickness rather 
than the GBC resilient modulus. In terms of the GBC resilient modulus, results indicated that increasing 
the modulus from 150 MPa to 250 MPa can reduce the cracking by 11.6% and faulting by only 0.2%. On 
the other hand, increasing the subgrade modulus from 30 MPa to 70 MPa appeared to reduce the 
cracking and faulting by 45.4% and 20.9%, respectively.  
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 



10 
 

(i) (j) 

 

 

Figure 4- Sensitivity of PMED-predicted distresses to different design input levels 

 

In the next part of the analysis, data was imported to the MATLAB’s Deep Learning Toolbox [8] in order 
to create fitting functions. While developing the models, it was recognized that although more neurons 
in the hidden layer entail more computation time and higher potential for overfitting the data, they may 
enhance network’s capability in case of complex problems. In other words, higher numbers of neurons 
in the hidden layer give the network more flexibility because the network has more parameters it can 
optimize. The number of hidden neurons was chosen to be 10 in this study and the resultant network 
performance was relatively stable. By definition, mse is determined as the mean sum of squares of 
errors between the network-predicted outputs (ai) and the observed target data (ti), as shown in 
Equation 1. 

 

𝑚𝑠𝑒 =
1

𝑁
∑(𝑒𝑖)2

𝑁

𝑖=1

=
1

𝑁
∑(𝑡𝑖 − 𝑎𝑖)2                                                        (1)

𝑁

𝑖=1

 

  

As with any neural network analysis, care was taken to avoid overfitting. Basically, the error becomes 
smaller after more epochs of training, nonetheless it might begin to rise on the validation data set once 
the overfitting occurs. That is, the network may start to memorize the training examples it has seen, 
rather than actually learn to generalize to new situations as they come. Reasonable performance levels 
were obtained considering that the final mse was found to be quite small. Reviewing learning curves of 
the developed model indicated that the validation and test curves were somewhat similar. 
Consequently, network overfitting did not seem to be a problem. Even though the test set error is not 
used during training, it is useful as a further check of the network generalization capability, 
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independently. Normally, if the error on the test set had reached a minimum at a significantly different 
iteration number than the validation set error, it could indicate that a poor division of the data set might 
have occurred. Table 4 shows the mse and R-squared metrics obtained from generated models. It is 
evident that an R-squared close to 1 reflects an exact linear relationship between predictions and 
observations. For this function fitting problem, reasonably good predictions were obtained for all 
datasets. 

 

Table 4- Performance measures of developed ANN models 

ANN Model Samples mse R2 

Faulting 

Training 1.64532e-3 9.98924e-1 

Validation 1.85187e-3 9.98875e-1 

Testing 2.43903e-3 9.98394e-1 

Cracking 

Training 1.36416e-2 9.96456e-1 

Validation 3.18881e-2 9.91453e-1 

Testing 2.99477e-2 9.90665e-1 

 

 

Also, Figures 5 and 6 display the ANN-predicted distresses against the target counterparts and provide 
an overall view of the model’s accuracy. Obviously, in case of a perfect fitting model, generated outputs 
and observed data should lie close to 45-degree line. The dashed line in the figures represents the ideal 
and desired fit line, however the solid line indicates the best fit linear regression line between outputs 
and targets.  

Based on conducted theoretical case studies on a relatively wide range of possible inputs, a reasonable 
estimation of climate change effects on JPCP performance was achieved via training ANN models. 
Potentially, adopting these models and developing similar ones under different circumstances can help 
in determining the range of climate change effects. Overall, given the complexity of climate change and 
its broad impacts on JPCP service life, the proposed method is deemed useful to facilitate adaptation 
and planning strategies. 



12 
 

  

Figure 5- Regression plots of developed ANN model for faulting distress 
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Figure 6- Regression plots of developed ANN model for cracking distress 
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Conclusions 

Many aspects of JPCP infrastructures are directly influenced by climate variability and change. 
Therefore, it is important to consider physically plausible future climatic conditions in order to assess 
the impacts of a changing climate and plan adaptation measures. In this study, 972 cases of JPCP 
structures were simulated using AASHTOWare PMED by including projected climate change for City of 
Winnipeg, Manitoba. Results of this study showed that joint faulting and slab cracking distresses are 
likely to be impacted by climate change further in the future. In addition, using a two-layer feed-forward 
network, promising prediction models were developed for both joint faulting and slab cracking. In 
summary, proposed method allows for reasonable prediction of JPCP performance under the complex 
effects of climate change. Finally, using this approach can help in adapting JPCP design to climate change 
in order to build resilience for public road infrastructures and assets in Canada. 
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