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Abstract 
 

Developing a risk-informed decision-making framework is crucial to address two major aspects 
of managing road networks. The first is the development of deterioration models to capture 
physical deterioration trends based on various road attribute combinations. The second is the 
development of an optimization process for capital planning that integrates risk analysis with 
lifecycle cost analysis, effectiveness of maintenance and rehabilitation technologies, and their 
network effects. This paper discusses techniques for performance modeling based on risk-
informed decision-making methods with a focus on municipal pavement assets. A case study is 
presented to show the effectiveness of the methods presented and to discuss real-life 
implications.    
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INTRODUCTION 
 
Municipal roads and highway systems are among the fundamental infrastructure assets that 
provide a foundation to the performance of all national economies by sustaining economic 
development and facilitating social interaction. Preserving and maintaining pavement assets has 
therefore been an important yet challenging task for governments under restricted funding 
programs. State and local governments in the United States spent $70 billion in 2014 alone on 
operation and maintenance activities (ASCE 2017). The 2016 Canadian Infrastructure Report 
Card reports a $48 billion replacement cost for pavements currently in poor condition, and a 
further $75 billion replacement cost for those in fair condition (CIRC 2016). The report card 
states that roads present one of the largest gaps between current and target rates of 
reinvestment, with a current reinvestment rate of only 1.1% and a target recommended rate of 
investment at 2% to 3% as a percentage of asset replacement value. The 2019 CIRC (CIRC 
2019) reports that since 2016 the situation has deteriorated with 39% of road assets currently in 
the Very Poor/Poor/Fair categories compared to 37% in 2016. With the continued downloading 
of road assets to lower-tier municipalities the increasing burden of operation and maintenance 
programs falls to city and county tax payers. Data from the Association of Municipalities of 
Ontario indicates that 67% of the roads in Ontario are under municipal jurisdiction, amounting to 
140,000 km of pavement with a combined operating and maintenance budget in the range of 
$40 billion per year (AMO 2016).  
 
When determining the cleverest way to spend an annual road budget, consideration must be 
given to the full toolbox of pavement preservation and rehabilitation treatments. Among various 
strategic approaches, preventive maintenance has received the most attention by highway 
agencies as a cost-effective method of extending the service life of a pavement network. 
Synthesis 153 on the Evaluation and Benefits of Preventive Maintenance Strategies (TRB 
1989), defined preventive maintenance as “a program strategy intended to arrest light 
deterioration, retard progressive failures, and reduce the need for routine maintenance and 
service activities.” More recently, the FHWA Pavement Preservation Expert Task Group and the 
National Center for Pavement Preservation emphasize more the benefits of long-term strategic 
preservation programs. FHWA defines pavement management as "a program employing a 
network level, long-term strategy that enhances pavement performance by using an integrated, 
cost-effective set of practices that extend pavement life, improve safety and meet motorist 
expectations” (FHWA 2017) while NCPP defines it as “the application of engineering and fiscal 
management using cost-effective treatments and existing funds to control the future condition of 
pavement networks” (NCPP 2019). 
 
A complete asset management plan and a good pavement preservation strategy should also 
incorporate the risk aspects of the network. Risk can be integrated into a comprehensive 
pavement management solution for many reasons, which range from uncertainties associated 
with cost or performance models to failure to achieve defined serviceability targets (Saha & 
Ksaibati 2016; Alberti & Federico 2019). Due to practical reasons and implementation 
difficulties, risk assessment is generally performed as a qualitative method (Wang et al. 2011). 
A multi-criteria analysis (MCA) is proposed to be used to improve the subjective nature of the 
qualitative risk assessment process. MCA is useful particularly when dealing with decision-
making problems that involve multiple objectives and constraints (criteria). A wide range of MCA 
methods were developed in 80s and 90s and since 2000 have become more widely considered 
in various domains. MCA techniques are diverse in both the kinds of problem they address and 
in the techniques they employ. Examples of some of the more widely used MCA methods 
include: Analytical Hierarchy Process (AHP) (Saaty 1990; Saaty 2008), fuzzy AHP (van 
Laarhoven and Pedrycz 1983), multi-attribute utility theory (Keeney and Raiffa 1993), and 
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Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) (Lai et al. 1994). 
MCA techniques can be employed to help overcome the limitations of human judgment by 
imposing a systematic and structured approach to evaluate criteria and their relative 
importance. To provide the ability to incorporate multiple factors or conflicting objectives MCA 
can consider compensatory or dominance relationships among multiple attributes (Lai et al. 
1994). This paper presents the application of the Delphi and Analytical Hierarchy Process (AHP) 
for risk assessment and discusses an optimized capital planning approach to devise effective 
capital renewal plans. Scenarios from a real-life case study compare the results of using risk 
tolerance constraints as part of the optimized capital planning. 
 
 
RISK INDEX FORMULATION  
 
The concept of risk and risk-based asset management has become more prominent in recent 
years. The concept of risk, however, can vary depending on the domain of application and the 
methodologies used for risk assessment. In an ideal world, risk is typically defined by Eq. 1 as 
the combination of Probability of Failure (PoF) and Consequence of Failure (CoF) in monetary 
terms. The formula can be further extended by incorporating concepts such as Risk Mitigation 
or Vulnerability. 
 
 
𝑅𝑖𝑠𝑘($) = 𝑃𝑜𝐹 × 𝐶𝑜𝐹($)                        ideal risk fomula                                     (1)                                        
 
 
The ideal risk formulation is typically aligned with quantitative risk assessment methods that are 
based on detailed numerical calculations on probability distributions associated with various risk 
events and monetary implications on the consequences of failure (Shahtaheri et al. 2017). Pure 
quantitative risk analysis is, however, a challenging task for many organizations. It requires 
massive amounts of high quality data to assign reliable probability estimates. There are often 
complex modeling processes involved, such as traffic demand modeling, network hydraulic 
capacity analysis, climate impact, etc., to assess the probability and impact of various failures 
on network performance. In addition, objective monetization of failure and performance is not 
easy due to the subjective and often controversial assignment of cost on soft factors such as 
social cost, traffic delays, community impact, loss of life, etc. Due to these difficulties, in 
practice, organizations often use a variation of the ideal risk formula that represents risk in terms 
of the Criticality Index (CrI) and the Likelihood of Failure (LoF) associated with different assets 
(Eq. 2). The practical approach transfers the ideal formula from a cardinal to an ordinal system. 
Rather than assigning exact numeric values to probability and consequence, the practical 
formulation uses various assignments for the level of Criticality and Likelihood of Failure. For 
example, four levels of criticality and likelihood can be specified based on the descriptions in 
Tables 1 and 2. These definitions and the number of levels can be adjusted and refined 
depending on the application and requirements for the analysis. 
 
 
𝑅𝑖𝑠𝑘 𝐼𝑛𝑑𝑒𝑥 = 𝑓(𝐶𝑟𝐼, 𝐿𝑜𝐹)                        practical risk fomula              (2)            
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Table 1: Sample Asset Criticality Levels 

Criticality Level 
Criticality 
Index 

Description  

Not Critical 1 Asset failure cost would be moderate and the loss of asset would 
have minor impact to the community. 

Slightly Critical 2 Asset failure cost would be moderate and the loss of asset would 
have moderate negative impact to the community. 

Critical 3 Asset failure cost would be moderate and the loss of asset would 
have substantial negative impact to the community. 

Extremely Critical 4 Asset failure cost would be extremely expensive and the loss of 
asset would be critical to the community. 

 
 
 
Table 2: Sample Likelihood of Failure Levels 

Likelihood Level 
LoF 
Index 

Description  

Very Low 1 Asset failure is not likely. Asset is in the beginning of its service life 
and in excellent/good condition. 

Low 2 Asset failure is not likely. Asset is in its early service life and in good 
condition. 

Moderate 3 Asset failure probability is moderate. Asset is in mid service life and 
in fair condition. 

High 4 Asset failure is probable or imminent. Asset is at the end of service 
life and in poor or very poor condition. 

 
 
To explain the two concepts, we use a simple car accident example. To determine the risk 
associated with driving a transport truck well over the speed limit on a highway as compared to 
diving an economy car slightly over the speed limit using the ideal quantitative assessment 
method, we first need to collect considerable amount of historical data on accidents on the 
highway under investigation. Using the accident data, a probability distribution can be 
developed based on driving speed. This distribution, however, might need to be further 
extended to consider the type and condition of the vehicle, time of day, level of traffic, weather 
conditions, or even the drivers’ age and experience. As seen in this example, quantifying PoF 
can be quite complicated and requires a multitude of variables to determine reliable probability 
functions, even for a small problem. The next step using the ideal case is to determine the 
consequence of failure in monetary terms. This can be easily achieved by determining the value 
of the vehicles. However, when assigning other social costs, such as personal injuries or 
emotional distress, the monetization process becomes more complex. Using the practical risk 
index calculation approach, we can assign a higher criticality to the transport truck as compared 
to the economy car, since its failure (or accident) is expected to be more costly. Also, the 
likelihood of failure (or accident) is higher in the first case since the driver is speeding 
significantly above the speed limit. This simple logic can replace the complex calculations 
needed to assign a monetary value or a probability distribution. This simplification, however, has 
its own limitations and care must be taken not to oversimplify a problem.  
 
In general, the CrI-LoF approach results in a qualitative risk assessment process that is highly 
dependent on expert opinion and past experience to replace the requirement to collect detailed 
high quality data and perform complex analysis of network performance under risk events. A 
purely qualitative risk analysis can also be problematic due to lack of consistency and the high 
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level of subjectivity in the assessment. This can lead to unreliable results by ignoring key inputs 
or inconstant subjective assignment of weightings. To avoid the pure subjectivities involved in 
the CrI-LoF approach, a semi-quantitative process is proposed by using multi-criteria analysis 
methods. To ensure that expert opinion and all key contributing factors in the analysis are 
captured, a Delphi surveying method is recommended. Also, to arrive at proper weighting and 
consistency in the analysis, a Fuzzy Analytical Hierarchy Process (FAHP) is proposed to be 
used as part of the risk assessment process.  
 

RISK ASSESSMENT USING MULTI-CRITERIA ANALYSIS (MCA) 
 
One of the important parts of performing the risk assessment process is to select influential 
factors for criticality calculations. As discussed in the previous section, one of the main 
advantages of using a semi-quantitative analysis based on MCA methods is the ability to 
substitute complex network modeling and lack of high-quality data with expert opinion. In this 
process, however, a strong consensus among experts’ opinions is required to ensure all 
significant influential factors are incorporated. To capture expert opinion properly, a Delphi 
method is proposed to be used to identify the key influential factors and their relative 
importance. The Delphi technique was developed in the 1950s by the Rand Corporation for the 
US Air Force to obtain the most reliable and statistically significant consensus among experts 
using a series of questionnaires with controlled opinion feedback (Linstone and Turoff 1975; 
Chan et al. 2001). The Delphi is used for a systematic communication and feedback process to 
arrive at a consensus among experts on an uncertain and often intangible issue in the form of 
relevant statistical data. Delphi is an iterative forecasting procedure characterized by anonymity, 
iteration with controlled feedback, and statistical response (Dickey and Watts 1978). The 
following Delphi process is proposed to be used to determine critically influential factors: 
 

1. Selection of an eligible expert panel: The success and reliability of the Delphi method 
and its results depend on the expert panel involved. To identify an eligible panel of 
experts a set of selection criteria is used. Only experts who have extensive experience in 
three out of four areas described below are selected to participate in the survey process. 

a. Experts who have extensive experience in public works departments and road 
construction or operation activities. 

b. Experts currently or previously involved in the asset management or pavement 
management process. 

c. Experts with extensive knowledge of risk assessment and network performance 
measures. 

d. Experts with knowledge of municipal council priorities and community concerns 
and inputs related to asset performance and management issues. 
 

2. Designing the survey and sending the first-round questionnaire: In the first round, 
the purpose of the survey is clearly explained, and the experts are informed that there 
would be two more rounds of questionnaires. Experts are asked to provide 5 to 10 
influential factors that have to be included as part of criticality assessment for road 
networks (or any other asset type). Factors are divided into two categories: physical 
attributes and socio-economic factors. A list of potential factors based on previous 
research is also provided to the experts as background. 
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3. Analyzing first round results: Survey results are carefully studied and influential 
factors are ranked based on the frequency of suggestion by the expert panel. The top 10 
factors under each category are selected and used for the next Delphi round. 
 

4. Delphi round two: In the second round, the selected influential factors are presented 
and experts are asked to assign a relative importance value to each factor on a 4-level 
scale:1) not important; 2) slightly important; 3) important; 4) extremely Important. 
 

5. Analyzing second round results: Based on the second-round results, influential 
factors were eliminated if over 60% of the experts agreed that they are ‘not important’.  
 

6. Delphi round three: The result of the second round in terms of percentage values of 
anonymous votes for the relative importance levels for each influential factor are 
presented and the experts are asked to reconsider the previously assigned relative 
importance  based on the overall results and the other anonymous expert opinions.  
 

7. Analyzing the final results: Based on the final round results, those factors that have 
over 60% votes on being ‘important’ or ‘extremely important’ are selected to be used as 
part of the criticality assessment process and are shown in Table 3. It is noted that the 
cutoff point percentage and the importance level can be adjusted depending on the 
availability of data and the comprehensiveness required for risk assessment. In general, 
a lower cutoff percentage and relative importance level will result in more factors being 
involved in the risk assessment process and consequently requiring  more data and 
time. 

 
Table 3: Influential factor results based on Delphi analysis 

Influential Factor Category 
Extremely 
Important 
(% of experts) 

Important 
(% of experts) 

Slightly 
Important 
(% of experts) 

Not 
Important 
(% of experts) 

Selected 
Factor 

Functional Class Physical 80% 20% 0% 0% Yes 

Roadside 
Environment 

Physical 0% 20% 40% 40% No 

Service Type Physical 0% 10% 50% 40% No 

AADT Physical 90% 10% 0% 0% Yes 

Surface Type Physical 0% 10% 40% 50% No 

Bus Route Physical 10% 60% 30% 0% Yes 

Maintenance 
Standard 

Physical 70% 10% 20% 0% Yes 

Access to School 
Socio-
economic 

10% 80% 10% 0% Yes 

Access to Health 
Services 

Socio-
economic 

30% 50% 20% 0% Yes 

Urban 
Development 

Socio-
economic 

0% 10% 40% 50% No 

Tourism 
Socio-
economic 

0% 10% 30% 60% No 

Council Priority 
Socio-
economic 

10% 50% 30% 10% Yes 

Cycling Route 
Socio-
economic 

0% 20% 70% 10% No 
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To determine the criticality influential factor weights for risk index calculations, the result of the 
Delphi analysis is fed into an Analytical Hierarchy Process (AHP). AHP is used to convert 
subjective assessments of the relative importance values by the expert panel into a set of 
consistent numeric weights. A pair-wise comparison matrix is developed on the basis of a ratio 
scale to arrive at weights for the competing factors. Table 4 shows the numeric preference 
scales used to develop a pair-wise comparison matrix. For example, if a judgment is made that 
factor A is moderately more important than factor B, then a preference index of 3 is assigned to 
factor A and the reciprocal of the index (i.e., 1/3) is assigned to B. 
 
 
Table 4: Pair-wise comparison preference weighting   

How important is criterion A compared to B? Preference Index 

Equally important 1 

Moderately more important 3 

Strongly more important 5 

Very strongly more important 7 

Extremely more important 9 

Intermediate values 2, 4, 6, and 8 

 
Using the AHP method, a hierarchical structure is developed to capture key criteria and their 
relationships to arrive at the desired outcome as shown in Figure 1. The main goal at the top of 
the hierarchy is to determine the risk index. As discussed, risk index is determined based on two 
criteria: criticality index and likelihood of failure. Criticality is linked to two levels of subset criteria 
comprising physical attributes and socio-economic factors. At the fourth level, all identified 
influential factors based on the Delphi analysis are used. Likelihood of failure is linked to current 
and historical condition data and the condition assessment methodologies. The last level shows 
all the road segments in the network that are being evaluated. 
 
 

 
 

Figure 1: AHP structure for risk index calculation  
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After the AHP structure is developed, the next step is to create the pair-wise comparison matrix 
(PCM) at each level for different subset criteria under consideration to determine appropriate 
weighting. The weighting is determined by solving the eigenvalue problem in Eq. 3, where A is 
the pair-wise comparison matrix of n different criteria (Eg. 4), 𝜆𝑚𝑎𝑥 is the maximum eigenvalue, 
and w is the weight vector (w1, w2,…,wn). 
 
 
𝐴𝑤 = 𝜆𝑚𝑎𝑥𝑤                                                       (3)                                        
 
 

𝐴 = [

1 𝑎12 ⋯ 𝑎1𝑛

1/𝑎12 1 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
1/𝑎1𝑛 1/𝑎2𝑛 ⋯ 1

]                   (4)            

 
          
Rigorous mathematical calculations and matrix algebra can be employed to calculate the 
weights as the elements in the eigenvector associated with the maximum eigenvalue of the 
matrix. A simpler alternative approximation can be used by first calculating the geometric mean 
(GM) of A and then estimating relative weights by normalizing the values. 𝜆𝑚𝑎𝑥  can then be 
calculated using Eq. 5, where n is the total number of criteria. A consistency ratio (CR) value is 
then calculated to identify if there are any inconsistencies in the pair-wise comparisons. A 10% 
tolerance is used for human judgment errors, therefore, if CR is greater than 0.1, matrix A needs 
to be revisited. CR is calculated using Eq. 7, where RI is the Random Index determined based 
on the number of criteria being compared (Saaty 2008) and CI is the consistency index (Eq. 6).  
 
 
𝜆𝑚𝑎𝑥 = ∑(𝐴𝑤/𝑤)/ 𝑛                 (5)                                      
 
 
 

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
                      (6) 

 
 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                        (7) 

 
 
 
Although AHP is designed to capture decision-maker knowledge, the conventional AHP has 
been criticized for its inability to adequately capture human uncertainty associated with 
judgment when performing the pair-wise comparison and expressing opinion in imprecise 
linguistic patterns (Buyukozkan, 2004). Fuzzy set theory was introduced in 1965 by Zadeh to 
deal with the vagueness associated with human perceptions (Zadeh 1965). Incorporating fuzzy 
set theory with AHP enables a more accurate description of the multi-criteria analysis process 
(Buckley, 1985; Cheng, 1999; Buckley et al. 2001; Bozbura, Beskese, & Kahraman, 2007). A 
triangular membership function using Eq. 8 is used for fuzzification of pair-wise comparison 
preference weightings as shown in Figure 2.  
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𝜇𝑇̃(𝑥) = {

𝑥−1

𝑚−1
 , 𝑙 ≤ 𝑥 ≤ 𝑚

𝑢−𝑥

𝑢−𝑚
 ,   𝑙 ≤ 𝑥 ≤ 𝑢

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                              (8)   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Fuzzy set membership function for AHP preference indices 
 
 
As an example, a fuzzy pair-wise comparison matrix is developed for the physical influential 
factors including: AADT, Functional Class, Minimum Maintenance Standard (MMS), and Bus 
Route. Table 5 shows the fuzzy PCM using a triangular membership function. 
 
 
Table 5: Fuzzy PCM matrix for physical attributes influential factors 

 AADT Functional Class MMA Bus Route 

AADT (1.00, 1.00, 1.00) (2.00, 3.00, 4.00) (2.00, 3.00, 4.00) (6.00, 7.00, 8.00) 

Functional Class (0.25, 0.33, 0.50) (1.00, 1.00, 1.00) (1.00, 2.00, 3.00) (2.00, 3.00, 4.00) 

MMS (0.25, 0.33, 0.50) (0.33, 0.50, 1.00) (1.00, 1.00, 1.00) (2.00, 3.00, 4.00) 

Bus Route (0.13, 0.14, 0.17) (0.25, 0.33, 0.50) (0.25, 0.33, 0.50) (1.00, 1.00, 1.00) 

 
 
The fuzzy weight for each influential factor is determined using Eq. 9 based on the geometric 
mean 𝑟𝑗̃ of influential factor j. The fuzzy weights can be used to further continue the AHP 

process or use a defuzzification method to arrive at crisp numeric values. A Centre of Area 
(COA) approach with normalization is used for defuzzification using Eq. 10. Table 6 shows the 
fuzzy weight calculations for the four physical attribute influential factors. The suggested PCM 
results in a CR value of 0.027 which is less than 0.1 and is acceptable. Based on fuzzy AHP 
analysis, AADT has the highest relative importance with a value of 52.9% followed by 
Functional Class at 23.0%, MMS at 17.1%, and Bus Route at 7%. As discussed, the sum of all 
weights should always add up to 100%. 

𝜇𝑇̃(𝑥) 

Preference 
Index 

1         2         3        4         5         6        7         8        9 
0 

1 
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𝑤𝐽̃ = 𝑟𝑗̃ ⊗ (∑ 𝑟𝑗̃

𝑛

𝑗=1

)

−1

                                  (9) 

 
 

𝑤𝑗 =
(

𝑙 + 𝑚 + 𝑢
3

)

∑ 𝑤𝑗
                                (10) 

 
 
Table 6: Fuzzy weight calculations for physical attributes influential factors 
 Fuzzy Geometric Mean 𝒓𝑱̃ Fuzzy Weight 𝒘𝑱̃ Norm. Weights 𝒘𝒋 

AADT (2.21, 2.82, 3.36) (0.337, 0.542, 0.843) 0.529 

Functional Class (0.84, 1.19, 1.57) (0.128, 0.229, 0.392) 0.230 

MMS (0.64, 0.84, 1.19) (0.097, 0.162, 0.298) 0.171 

Bus Route (0.30, 0.35, 0.45) (0.045, 0.068, 0.113) 0.070 

 
 
Using an MCA process, LoF is determined based on condition data, condition assessment 
protocols, and expert opinion on likelihood values. A Delphi process similar to previous sections 
can be used to capture expert input on condition data and LoF relationships. Condition data and 
components of a condition index, such as structural defects, in combination with expected 
service life and age of an asset can be a reasonable input to determine LoF. The PCI-LoF 
relationship can be translated into a mapping function as shown in Figure 3. Using the mapping 
function, deterioration curves associated with various road segments based on their physical 
characteristics can be converted into LoF projection curves to be used in the capital planning 
process (Figure 3). Th incorporation of quantitative deterioration models further improves the 
semi-qualitative nature of the proposed risk assessment process. It is important to note that in 
the pavement management context, LoF can be interpreted as representing the possibility of an 
unacceptable serviceability, increased accident rate, or other negative impacts on road users 
and network performance. This is slightly different in the case of other asset types such as 
watermains.  
 

 
Figure 3: Use of LoF mapping function to transfer a deterioration curve into an LoF projection 
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CAPITAL RENEWAL PLANNING 
 
To devise a capital plan, various methods of decision-making can be employed. Priority ranking, 
cost-benefit analysis, and mathematical optimization are among the most widely used methods 
for capital renewal decision-making. Priority ranking has been suggested and used in many 
pavement management applications (Zimmerman et al. 2011; Wolters et al. 2011).  Using 
ranking, projects are typically selected in order based on a calculated Priority Index (PI). 
Prioritization is generally performed based on agency policies and can range from the subjective 
opinion of road managers, to age-based, or to condition-based ranking methods. Indicators 
such as pavement condition index (PCI) can be used to prioritize road segments. Other 
attributes such as functional class, traffic, or minimum service standards can also be used to 
determine a PI. After determining a PCI for each road segment, the entire network is sorted 
from the highest to the lowest priority segment. Next, the highest priority segment is selected 
and the required treatment type and its associated cost are determined. If the available budget 
is adequate to cover the cost, the segment and the associated treatment is selected. The cost of 
treatment is subtracted from the available budget and the process is repeated until all segments 
have been covered or the available budget has been used up. 
 
Cost-benefit analysis (CBA) originated from the work of by two French engineers, Auguste 
Cournot and Jules Dupuit in the mid-19th century, who were known as the founding fathers of 
microeconomics (Arler 2006). CBA is a methodology to explicitly determine benefits and costs 
associated with a project in monetary terms (Thoft-Christensen 2012; Fraser and Jewkes 2013). 
CBA can be combined with MCA for a more comprehensive analysis where CBA assesses the 
monetary or financial aspects of the problem and MCA assesses those criteria that cannot be 
evaluated in monetary terms. Using the CBA method, an agency can prioritize projects based 
on the cost-effectiveness or the ratio of benefit over cost (B/C ratio) of a project. In general, an 
investment alternative is considered desirable when resulting benefit over cost ratio is greater 
than one, or in other words, the expected benefits exceed the expected costs. When a set of 
mutually exclusive alternatives exists, they can be ranked based on their B/C ratio and a ranking 
process can be employed to arrive at the final solution. A variation to the CBA method, called 
incremental CBA, looks at the incremental benefit gains and an alternative becomes more 
preferred than the current preferred one, if its incremental benefits are higher than its 
incremental costs (Fraser and Jewkes 2013). CBA is an effective method to determine the 
monetary implications of project alternatives in terms of costs and benefits. This is particularly 
useful at the project-level analysis when a limited number of projects are compared for the 
upcoming construction season. CBA, however, has a number of limitations when it comes to 
effective network-level preservation programing. Although, some variations of CBA try to take 
into account the time dimension of the analysis, it lacks the capability to analyze the impact of 
time delays or accelerations on the overall optimality of the results within a network of assets. 
Another key limitation of CBA, similar and priority ranking, is its inability to incorporate multiple 
constraints into the analysis. 
 
Optimization is a branch of science in Operations Research (OR). OR provides a scientific 
approach to decision making that seeks to optimize the performance of a system, usually under 
conditions requiring the allocation of scarce resources. OR originated during World War II when 
the British government recruited scientists from different disciplines to solve the operational 
problems of the war, such as the deployment of radar and the management of convoy, 
bombing, anti-submarine, and mining operations, which coined the term Operations Research. 
In the context of optimization, a system can be a collection of interdependent entities that work 
together to accomplish the goal of the system. For example, a corporation can be thought of as 
a system whose goal is to maximize its profit, while subjected to resource constraints and 
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regulations governing its business activities. The focus of optimization is, therefore, to 
understand the complex operations of any system so as to predict its behavior over time and to 
identify the best course of action that leads to an ideal level of performance, or in other words, 
an ‘optimal’ solution. This scientific approach to decision-making usually involves the use of 
mathematical models to represent the system’s behavior in terms of objective functions, 
decision variables, and constraints (Winston & Venkataramanan 2003). 
 
In the context of pavement management, or more generally, asset management, the term 
optimization has been used rather loosely to describe methods such as incremental cost-benefit 
analysis, MCA, or even priority ranking. These methods, however, cannot be categorized as 
formal mathematical optimization and are far less effective as compared to true optimization 
methods. Performing a true optimization analysis for the purpose of allocation of capital funds, 
however, represents a complex problem (Abaza, 2007). One of the key challenges associated 
with optimization modeling of pavement preservation programs is the exponential increase in 
solution space size as the number of road sections and consequently decision variables 
increase (Al-Bazi & Dawood, 2010). Renewal fund allocation represents a type of optimization, 
called ‘combinatorial’ problems that deal with finding the best possible solution amongst a large 
number of possibilities based on the combination of decision variables. To handle complex 
combinatorial problems, the trend in recent literature has been to use evolutionary optimization 
techniques, such as genetic algorithms (GAs) (Liu et al., 1997). In addition to GA, more rigorous 
mathematical methods, such as mixed integer programming, can also be employed in this 
domain (Winston & Venkataramanan 2003). GA-based techniques are inspired by the process 
of natural selection and the principle of survival of the fittest in living species that result in an 
intelligent systematic search towards the optimum solution in the combinatorial space of all 
possible solutions (Goldberg, 1989). Many GA optimization models have been introduced for life 
cycle analysis and renewal planning in different asset domains, including pavements (de la 
Garza et al., 2011), bridges (Elbehairy et al., 2006), facilities (Rashedi & Hegazy 2014), and 
groundwater remediation (Zou et al., 2009). While the processes described in the literature 
provided useful models, their solution quality and speed greatly depended on problem size and 
model efficiency. Increasing problem size significantly affects the optimization results and 
degrades the performance, resulting in prohibitive processing time (Cook et al., 1997, Rashedi 
and Hegazy 2014). 
 
Recent enhancements in advanced optimization technologies have led to the development of 
practical decision support tools that utilize true optimization capabilities. The improvements 
achieved through an optimized solution can be translated into substantial cost savings, added 
performance, and a higher level of service to the community. A capital planning tool with 
optimization capability can maximize the overall performance of a network over a multi-year 
analysis horizon while satisfying multiple constraints, such as budget limits, levels of service, 
operational considerations, etc., all at the same time. The resulting fund allocation plan 
represents the best possible course of action in terms of timing and selection of assets and 
treatment alternatives, while satisfying all the specified constraints. This optimum plan is, 
therefore, a defensible solution that results in the highest investment efficiency of taxpayer 
money. The optimization’s ability to effectively meet various criteria from all stakeholders can 
result in much higher degrees of satisfaction and support from the municipal councilors and the 
community at large during the funding approval and project justification process. To perform a 
true optimization analysis on our case study example network, a commercial optimization tool 
for capital planning called, DOT (Decision Optimization Technology)™, is used. DOT™ has the 
capability to optimize large-scale asset management problems to determine the best course of 
action in terms of timing and selection of a wide array of preservation treatments that results in 
the highest investment efficiency while satisfying a large number of constraints regarding 
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serviceability criteria, socioeconomic policies, budgetary limits, co-located projects, and 
operational efficiency. 
 
The City of Sarnia in the province of Ontario in Canada is used as a case study to demonstrate 
the implementation of the proposed risk-based capital planning process. The network under 
analysis has 450 centreline kilometers of roads that consist of over 2,400 road segments. The 
Risk Index (RI) for each road segment is calculated by looking at the physical and socio-
economic attributes using the fuzzy AHP process as discussed previously. LoF is also 
determined based on a range of deterioration curves considering the mechanistic and traffic 
characteristics of the roads and current condition assessment data in the form of a pavement 
condition index (PCI). RI is scaled to a 0-100 range with four colour-coded levels of risk, 
including: Low (RI from 0 to 15), Moderate (RI from 15 to 30), High (RI from 30 to 50), and 
Extreme (RI from 50 to 100). It is important to note that a normalization factor is applied on 
numeric values such as AADT, using Eq. 11 to incorporate their criticality scores. Figure 4 
shows the GIS visualization of Criticality, Condition, and Risk maps associated with this 
network.  
 
 

𝑥 =
𝑥𝑚𝑎𝑥 − 𝑥

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
                                             (11) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Network risk index calculation results 

a) Network Condition Map b) Network Criticality Map 

c) Network Risk Index Map 
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Two scenarios are compared to investigate the impact and using a risk tolerance as part of the 
capital planning process. The first scenario looks at a $2M annual investment without any risk 
tolerance constraint, while the second scenario applies a RI tolerance of 30 to collector and 
arterial segments (i.e., all collector and arterials are to be assigned Low and Moderate risk 
levels) and RI tolerance of 50 to local roads (i.e., local roads cannot achieve Extreme risk 
levels). Figure 5 shows the risk exposure matrix with various risk levels under both scenarios. 
Each point on the risk exposure chart represents a road segment at a risk level based on the 
CrI-LoF approach. 
 
 
 

 
 
 

 
 

Figure 5: Risk exposure results of the two scenarios 

a) Scenario 1: $2M annual investment optimization with pure focus on physical performance  

b) Scenario 2: $2M annual investment optimization with risk tolerance constraint  
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Comparison of the results clearly indicates that without the risk tolerance constraint in Scenario 
1, a number of segments will be in the high and extreme risk areas by the end of the plan. By 
introducing the risk tolerance constraint in the second scenario, all segments in high and 
extreme areas are eliminated by the end of the plan as part of the optimization process. Figure 
6 also compares the network condition results under both cases. Overall, the result indicates 
that the $2M investment level is not adequate to improve condition and maintain a satisfactory 
risk tolerance at the same time.  
 
 
 

 
 
 
 

 
 
 

Figure 6: Network condition results for two scenarios 
 
 
Scenario 1 with a pure focus on physical performance results in a better overall network 
condition as compared to Scenario 2. However, the consideration of risk makes the second 
scenario more practical. As an example, an ‘Extremely Critical’ road segment representing an 
arterial road with traffic of over 10000 vehicles per day at MMS level 2, did not receive any 
treatment in the first scenario. The road is currently in poor condition and requires a full depth 
reclamation treatment at a total cost of over $500K. In the first scenario, the money was saved 
from this segment and spent on other segments with a higher overall condition. The risk 
implications of this decision, however, contradicts the overall objectives of the decision-makers 

a) Scenario 1: $2M annual investment optimization with pure focus on physical performance  

c) Scenario 2: $2M annual investment optimization with risk tolerance constraint  

Condition in 2019 Condition in 2029 

Condition in 2019 Condition in 2029 
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and can expose significant risk to road users and to the network performance as a whole. In the 
second scenario, this section received a full depth reclamation treatment followed by preventive 
maintenance in year 2026. The timing of the treatment was slightly later in the plan since the 
trade-off of maintaining good roads using preventive maintenance treatments was also taken 
into account as part of the optimization process. Therefore, the initial years of the plan were 
more focused on preventive maintenance activities and the full depth reclamation was applied 
mid-way through the plan to handle the risk implications of no intervention on an extremely 
critical road segment.  
 

CONCLUSIONS 
 
A practical and implementable pavement management plan should integrate risk analysis within 
the performance modeling process. Due to practical reasons and implementation difficulties, risk 
assessment is generally performed as a qualitative method. A multi-criteria analysis (MCA) 
approach is proposed to be used to improve the subjective nature of the qualitative risk 
assessment process. A Delphi and Fuzzy Analytical Hierarchy Process (FAHP) for risk 
assessment was discussed as part an optimized capital planning approach to devise effective 
capital renewal plans. The Delphi is used for a systematic communication and feedback process 
to arrive at a consensus among experts on an uncertain and often intangible issue related to 
criticality influential factors. The FAHP approach enabled a more accurate description of the 
multi-criteria analysis process by capturing decision-maker knowledge and the human 
uncertainty associated with judgment when performing the pair-wise comparison and 
expressing opinion in imprecise linguistic patterns. Results showed that without the risk 
tolerance constraint a considerable number of critical road segments achieved high and 
extreme risk levels by the end of the plan. By introducing a risk tolerance, all segments in high 
and extreme areas were eliminated. Although the effectiveness of preventive maintenance was 
considered as part of the optimization process, the risk implications of no intervention on critical 
road segments was better captured using the risk tolerance constraints as part of the analysis.  
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