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Abstract 

 

Bike Share Toronto is a docked bike share system (“System”) that operates within the City of Toronto. It 
began operating in 2011 and has expanded to include 625 stations as of June 2022. This paper uses a 
microsimulation model of the System to examine the operational challenge of rebalancing bike share 
networks. Using simulations of the System’s operation each day in 2021, this paper compares the impact 
of three different rebalancing scenarios upon rebalancing operations in the system.  
 
The three scenarios cover: (a) the “as is” condition using observed rebalancing operations; (b) a worst-
case scenario where no rebalancing operations are conducted, and (c) an optimized scenario where 
rebalancing operations are planned with perfect knowledge of ridership patterns. The optimized 
scenario offers a theoretical maximum efficiency to better understand how operations could be 
improved.  
 
The results of the model’s analysis show that the number and length of delays where a user must 
relocate to another station due full or empty stations decrease dramatically between the worst-case 
scenario and the “as is” scenario. Under the optimized scenario, users experience fewer delays and the 
tour lengths of the trucks performing rebalancing operations are 36% lower than in the “as is” scenario. 
These results highlight the potential for improved forecasting, route planning and rebalancing to reduce 
the System’s operating costs and improve user experience.   
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 Introduction 

Urbanization trends around the world continue to drive strong growth in city populations. In Canada 
73.7% of the population now lives in a large urban area, defined as an area with 100,000 or more 
people, and these urban areas are where most of the population growth has occurred from 2016 to 
2021 (Statistics Canada, 2022). Improvements to cycling infrastructure and the encouragement of bike 
transit offer compelling solutions for cities facing the negative impacts of congestion and grappling with 
the challenges of decarbonization. Cycling offers users an active, inexpensive and zero emissions 
method of transportation. In the City of Toronto 46% of trips are taken by car, compared with 13% made 
by foot or bike. However, many city trips currently completed by cars are short, the median trip length 
by car is 5.5 km, making them strong candidates for completion by bike instead (Bess Ashby, 2018). To 
maximize cycling uptake, cities can encourage bike trips by providing safe cycling infrastructure, which 
increases people’s willingness to cycle (El-Assi et al., 2017), and by offering bike share systems. These 
systems lower the barriers to taking up cycling by removing storage requirements and mitigating the risk 
of stolen bikes. Bike share systems also facilitate both one-way trips by bike and trips paired with public 
transit, providing a convenient last mile solution for transit journeys (Kim & Cho, 2021). 

Traditional transit activity models focus on modelling distinct walking, transit, auto and cycling modes. 
However, the recent progression of technology has given rise to a new generation of mobility services 
that fall along a spectrum of use. The flexibility offered by these services provides interesting new 
challenges for modelling transportation systems. Modelling the interaction between the system 
operator and the user becomes key to model utility and accuracy. (Calderón & Miller, 2020).  

Bike sharing systems are an example of a growing flexible mobility service whose users operate along 
this spectrum. The City of Toronto’s own docked bike share system, Bike Share Toronto, began in 2011 
with 80 stations and 1,000 bikes (Need to Borrow a Bicycle?, 2011) and has grown to a system of 625 
stations and over 6,000 bikes in 2022 (Toronto Parking Authority, 2022). One of the main challenges for 
bike sharing systems is ensuring that the system remains in balance, meaning that there are available 
bikes and docking stations when users start and end their journeys. To achieve this, operators must 
“rebalance” the system by moving bikes between stations to manage the supply. This paper uses a 
microsimulation model of the System to examine the operational challenge of rebalancing bike share 
networks. Using simulations of the System’s operation each day in 2021, this paper compares the impact 
of three different rebalancing scenarios upon rebalancing operations in the system.  

 Literature Review 

2.1 History of Bike Share Systems 

Bike share systems have exploded in popularity in recent years and many cities around the world now 
have extensive bike share networks. The history of bike share systems dates to 1965, when Amsterdam 
instituted a small system of “white bikes” meant for shared use. Ultimately, the system lacked effective 
security and the bikes were regularly vandalized and stolen (Fishman, 2020).  

Starting in the mid-2000s systems started to arise which used docking stations for bikes and featured 
payment methods tied to memberships and credit cards (Fishman, 2020). These systems improved upon 
the security issues that beset previous bike share system attempts and the systems grew rapidly. Many 
such systems continue to successfully operate in a wide range of cities around the world today. The 
system studied in this paper, Bike Share Toronto, is such a system.   
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Bike Share Toronto is a docked bike sharing system in the City of Toronto. It operates using the bike and 
docking system developed in Montreal for the Bixi bikeshare system. The Bixi platform is used in many 
bike share systems including those in New York City and London (Smart Bike-Sharing Systems for Cities, 
n.d.). The system in Toronto is owned by the Toronto Parking Authority, a municipally owned 
corporation that subcontracts the operation of the system to the mobility operations company Shift 
Transit.  

Bike Share Toronto was originally launched in 2011 under the name Bixi with 80 stations and 1000 
bicycles (Need to Borrow a Bicycle?, 2011). The system was originally owned by the Public Bike System 
Company (“PBSC”), who created the Bixi bike share system in Montreal, but was taken over by the 
Toronto Parking Authority in 2014 after PBSC filed for bankruptcy. The system was renamed Bike Share 
Toronto after it was taken over (New Name, Look and Prices for Toronto’s Bixi, 2014). Since the Toronto 
Parking Authority assumed control of the system, it has grown to over 600 stations and over 6000 
bicycles.   

2.2 Predicting Bike Share Demand 

Many studies of bike sharing systems attempting to predict demand focus on overall ridership trends 
and provide estimates for daily or yearly ridership numbers. These are necessary for long term planning 
system expansion and infrastructure expansion but do not provide sufficient granular detail to model 
the daily activity in a bike share network for rebalancing planning.  

When predicting demand, factors including weather and the time of day, week, and year must be taken 
into account. (Ashqar et al., 2019). The following models have analysed other factors that influence bike 
share demand. 

A study of the bike share system in the San Francisco Bay Area compared several dynamic linear models 
to predict bike volumes at stations. These models used snapshots of the bike system as input data. They 
performed well in predicting bike volumes up to two hours in the future. Large spikes in station activity, 
such as those caused by rush hour, resulted in higher estimation errors (Almannaa et al., 2020).  

Deep learning methods have also been employed to provide short term forecasting of bike demand. A 
study used data inputs from bike share systems in Italy and employed Bidirectional Long Short-Term 
Memory networks to predict trips based on historical weather and ridership observations (E. Collini et 
al., 2021). Another study combined two levels of neural networks to capture the spatial and temporal 
correlations between stations (X. Yang et al., 2020).  

Studying the clustering of stations has also been an effective tool to predict bike station demand. A 
study in Washington, DC found that groups of stations in a geographic area had a much smoother and 
more predictable ridership demand. The study improved on models that focus on predicting demand at 
specific stations by clustering stations located in a geographic area and then applying machine learning 
algorithms to predict demand at the station cluster (A. A. Ramesh et al., 2021). Using clustering to 
predict cycling ridership is effective because some of the factors affecting ridership within a given area, 
such as weather, will impact all stations within that area evenly. Studies have successfully evaluated 
cycling routes using a clustering approach to predict link level ridership (Beitel et al., 2017).  
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2.3 Rebalancing Strategies 

One of the main challenges of operating a bike share network arises from dealing with the problem of 
rebalancing available bikes at docks across the system. Without rebalancing, the system can quickly 
become less useful as people are unable to start or finish trips at their desired locations. Operators of 
bike share systems must work to ensure that full or empty stations do not prevent trips from occurring. 
To maintain balance within a bike share system, the operator must run rebalancing operations to move 
bikes between stations and enable the efficient operation of the network.  

Different system operators may have distinct network operation and rebalancing objectives. For 
example, some operators identify and prioritize the operation of critical stations, such as those near 
transit stations, while others favor a more balanced approach across the network (Médard de Chardon 
et al., 2016). Cities have also used different strategies to incentivize rebalancing. For example, in New 
York City the bike share operator uses a rewards program that encourages uses to make trips which 
rebalance the network (Bike Angels | Citi Bike NYC, n.d.). The success of a network’s rebalancing 
strategies can have important impacts on users’ perceptions of the bike share system’s reliability and 
utility. The significant impact of a successful rebalancing strategy is important for system owners and 
stakeholders invested in the success of the bike share system. There have been several studies which 
have studied this important issue using different prediction horizons and modelling techniques. These 
have included dynamic forecasting of station occupancy, as well as different decision making and vehicle 
routing strategies (Brinkmann, 2020). 

For a rebalancing strategy to be an effective tool for decision making in practice, a model must be 
sufficiently computationally efficient to provide a system operator with answers quickly and 
consistently. Models have sought to meet this goal using different strategies and formulations. Models 
studying this issue can be broadly categorized into two groups. Static rebalancing models rely on a pre-
determined set of rebalancing movements across a given time period, while a dynamic model can vary 
in strategy throughout the day.  

One example of a static rebalancing model is Ren et al’s evaluation of mixed integer linear programming 
formulations of rebalancing operations (Ren et al., 2020). This analysis did find optimized truck routings 
for rebalancing bikes, but it formulated the problem with all rebalancing operations conducted 
overnight, which did not capture the evolution of the system throughout the day. This also differs from 
the operational pattern in the City of Toronto, where the system operator rebalances the system during 
the day as well as overnight. 

Focusing on the optimal rebalancing strategy is not the only consideration for the rebalancing problem. 
Predicting demand effectively so that operators understand when stations will be full or empty is a 
required first step before applying a rebalancing strategy. Dynamic rebalancing models work under the 
assumption that demand prediction and a subsequent rebalancing strategy can evolve as new 
information is available. One study of the bike share system in New York City provides an example of 
dynamic formulation. Researchers dynamically predicted when stations would next be full or empty 
based on a birth-death process. This “time until unavailable” was then used to prioritize station 
rebalancing and a heuristic vehicle routing algorithm applied to plan truck trips. The efficacy of this 
approach was measured by the fraction of that time stations were out of service, the number of 
rebalancing operations, and the distance travelled by trucks (Chiariotti et al., 2018). 

Once predictions of ridership have been made, solving the vehicle routing of rebalancing operations on a 
bike share network in the most computationally optimal way is also computationally expensive. This 
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limitation has led several studies to propose different heuristics for solving the rebalancing issue. 
Reducing the choice set, as well as using heuristic solutions instead of definitively optimal ones, 
meaningfully reduces the computation time for solving the problem, allowing solutions to be generated 
within a timeframe that could be useful to an operator if it were to be operationalized in the real world. 
One proposed approach to this problem has been to first predict the bounds of occupancy at each bike 
share station that will lead to meeting all demand, then to cluster stations into self-sufficient clusters 
that can all rebalance each other, and finally to optimize a single vehicle routing problem (“VRP”) 
(Schuijbroek et al., 2017). 

Simulation models offer a platform to compare different approaches to rebalancing a bike share system. 
Jin et al implemented a simulation framework testing data from the bike share system in New York City. 
This study provided a simulation framework of the bike share system operation, using a non-
homogenous Poisson process for simulating station demand and a discrete distribution to determine 
destination. Travel times were modelled by a shifted Gamma distribution. The system also modelled the 
rate of bike deterioration leading to removal from stations for repair. Finally, the study optimized 
rebalancing strategies to minimize truck travel time and unloading time (Jin et al., 2022).  

 Data 

This paper uses data from the City of Toronto’s Open Data Portal. This data source offers three types of 
data about the Bike Share Toronto network. Together, these data were used to create the model 
discussed in this paper and they provide the basis for the following analysis. The first type of data 
provided by the portal is trip data. The portal makes available a log of every bicycle trip made on the 
Toronto Bike Share Network with details such as the start time, the end time, the start station, and the 
end station. The second type of data available is the station information. This includes the location, 
unique identifiers, names, and capacities for each station in the network. The third type of data 
provided is real time details about the state of each station on the network. This data is only provided in 
real time, it is not logged. In order to capture this third type of data and understand the progression of 
the Bike Share Toronto network over time, a script on Google Scripts was used to collect snapshots of 
the system every minute from January 2021 to July 2022.  

In addition to these data provided by Bike Share Toronto, the analysis uses the City of Toronto’s road 
network map. This data is also provided by the Open Data Portal for estimating distances and travel 
times between stations on the Bike Share Toronto network. The tracked travel modes include walking 
and driving by truck between bike share stations. Bike travel times between stations was estimated 
using the historical trip data. 

 Modelling Bike Share Toronto 

The analysis in this paper is based on a micro-simulation model of the Bike Share Toronto network. It 
has been coded in Python and it utilizes the Pandas and NumPy libraries. The bike share stations are 
represented in a stations object that tracks the current number of bicycles docked at each station, as 
well as information about the station including station identifiers, locations, and its total number of 
docking points. The world object tracks the current time in the simulation, the travel time matrices 
between stations, the stations object, and the trips currently in progress. When a trip is registered in the 
system, the world object applies the trip by removing a bicycle from the station at the start point of the 
trip and logs the trip in an array which contains the expected arrivals using the stored travel time matrix 
stores. 
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When time is incremented in the simulation, the trip list is evaluated for the time increment, and the 
trips are applied to the world. This functions by subtracting the departures from the appropriate 
stations and logging the anticipated arrivals in the expected arrivals matrix. Next, the expected arrivals 
matrix is evaluated. Any arrivals within the time increment are added to the appropriate stations and 
the matrix is recentered to have the current time in the matrix’s starting position. 

It is important to warm up the model when simulating a day or any other time period. This involves 
applying trips for a period before the desired analysis so that there are trips in the system stored in the 
expected arrivals matrix in addition to the bicycles in docks tracked in the stations objects. To achieve 
this, the model also includes a method to rebase the stations in the world to a desired level of 
occupancy while keeping the expected arrivals matrix. A standard two hour warm up period was applied 
for the purposes of the analysis. This period was deemed sufficient to accurately represent ongoing 
trips, as 99.2% of all trips are shorter than 120 minutes. 

4.1 Simulating a Day’s Operation 

The simulation of a day uses real trip data from observed trips on the network. These trips give a travel 
time that is used in the simulation. However, for the simulation of different situations and travel 
scenarios, when an observed trip length is not available, travel time matrices between each pair of 
stations on the Bike Share Toronto network for each mode are used. For walking and truck travel times, 
the shortest path between each pair of stations is computed using the City of Toronto road network, 
with the walking matrix ignoring road directionality and the truck matrix obeying road directions. An 
average travel speed of 5 km/h is then applied to the walking distances and a speed of 30 km/h is 
applied to the truck travel distances. Historical trip data is used for the bike travel time matrix. The 
median travel time between a pair of stations is taken for use in the simulation. However, some pairs of 
stations do not have a sufficient number of trips between the origin destination pair to provide an 
accurate median. In such cases, the shortest path distance and an average travel speed of 12 km/h are 
used to generate the travel time. Although there are examples of trips starting and ending at the same 
station with a wide range of travel times, these trips are considered to be recreational trips and are 
difficult to recreate in a simulation setting. For the purposes of the micro-simulation model, if there is no 
observed trip to draw from, a trip starting and ending at the same station is considered to have a travel 
time of zero. 

Beyond the measures discussed above, the behaviour of users encountering full or empty stations needs 
to be simulated in order to simulate the functioning of the bike share network. The station object 
compares its updated occupancy with its capacity when trips are applied. If the new occupancy is 
greater than the station’s capacity, trips above the capacity must be rerouted. When a trip is rerouted 
because a station is full, the model uses the bike travel time matrix and finds the closest station by travel 
time that is not at capacity. The expected arrivals matrix is then updated with a new arrival at this 
nearby station at a time equal to the travel time in the future. If the new occupancy is less than zero, 
then the trip must also be rerouted. For this empty station case, the model uses the walking travel time 
matrix and finds the closest station by travel time that is not empty. The expected arrivals matrix is then 
updated with a departure at a time equal to the walking time in the future and an arrival at the original 
destination at a bike travel time between the new origin and original destination after. 

This behaviour for full and empty stations is considered valid because of the smartphone app which 
gives users real-time occupancy information on the network. A user who encounters a full or empty 
stations could reasonably check this app to confirm where the nearest station with available bikes or 
docks and travel there instead of simply travelling to the nearest station. 



 

8 

When rerouting trips, the system logs both the number of trips delayed and the length of delay. For trips 
rerouted by a full station, the delay is counted as the travel time from the full station to the new 
destination. For trips rerouted by an empty station, the delay is counted as the walking time to the new 
origin, plus the travel time to the destination, minus the original travel time. This delay is always 
considered a delay and if the resulting new travel time is less than the original travel time, the delay is 
considered to be zero, not a negative value. This is to capture the reality that a user’s original plan could 
not be executed and the change should not be considered as an advantage even if the travel time would 
be shorter. 

Finally, there are the movements that the system operator makes. In Bike Share Toronto’s case, the 
operator runs trucks around the city to remove bikes from stations at or nearing full capacity and to add 
bikes to stations which are or approaching empty. The model represents this with a bike operator 
object. This object stores a list of planned truck movements and at each time increment, the model 
world checks the bike operator to see if there are any truck trips to initiate. A truck trip has an origin, a 
destination, a start time, a duration, the number of bikes removed from the origin, and the number of 
bikes delivered to the destination. At each timestep, the model checks if there is a new truck trip 
starting. If there is, the appropriate number of bikes will be removed from the station in question, and 
the appropriate number of bikes will be added to the expected arrivals matrix at the duration in the 
future. The number of trucks available and the truck routing are handled in a separate truck planning 
module discussed in Section 5.  

Another role of the bike share system operator is to remove bikes in need of servicing from docks. When 
the model system is initiated, each station has a record of how many broken bikes are at each station. 
The capacity of the station is calculated by taking the number of docking points less the number of 
broken bikes occupying the station. During the simulation, it is assumed that whenever the operator 
performs a rebalancing operation on a station, the broken bikes are removed from the station for 
servicing. Once this happens the model updates the capacity of the station to reflect the newly available 
docking points. 

The Bike Share Toronto operator can also implement “valet-stations”. These stations are staffed by Bike 
Share Toronto operators and have extra bikes on site at a station. The operator can add or remove bikes 
from the station throughout the day. This effectively lifts the station’s capacity constraints. Stations that 
experience a sufficiently large reversing trend, such as a large number of commuters arriving in the 
morning and departing in the evening, can reach both full and empty conditions within the same day. 
Such stations are considered to be good candidates for valet-stations. 

There are a couple of elements that do not exist in this iteration of the model but could be implemented 
in the future. The first is the process of bike condition degradation. In reality, when a user encounters an 
issue with a bike, such as a flat tyre, they can dock the bike and flag it as needing repair. This notifies the 
system operator to remove the bike from service and repair it. There is no effective way to model the 
wear of the bikes to predict this breakdown. This makes the process by which bikes break down random. 
A system where bikes break at random could be implemented into the model. This was not modelled in 
this case because the effect was not considered to have a meaningful impact on the analysis provided or 
to contribute to a more useful model. Rerouted trips were considered to use the median travel time, or 
the shortest path distance with an assumed average speed. A more detailed travel time that draws from 
the distribution of the observed travel times between two stations could be implemented but was not 
considered to be a major issue. The approximation was considered acceptable in this case given the 
number of factors that can affect travel time such as fitness, route choice, and time spent adjusting the 
bike which are not modelled. 
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4.2 Modelling Assumptions 

Trip length varies along each available route on the network. An assumed average travel speed of 12 
km/h along the shortest path route between two stations is considered a good approximation where 
detailed historical trip data between two stations is not available. In modelling the system, the median 
trip length between two stations is used to calculate travel time where sufficient historical data are 
available.  

The approximation that users will take the shortest path and travel at 12km/h simplifies the model 
system where sufficient historical data in not available. This approximation is informed by both past 
studies and an analysis of trips on the Bike Share Toronto network. Using GPS traces of observed trips, a 
previous study of cycling route choice in the City of Toronto found that, in addition to length of path, 
several factors affect route choice among cyclists. The study found that cyclists will accept longer travel 
distances in order to ride on bike facilities such as bike lanes and cycle tracks, will avoid riding on busy 
arterial roads, will avoid hills, and will choose routes with fewer turns. The study found these factors to 
be significant and found that only 22% of the observed trips matched the shortest path. It also found 
that there was a 10% deviation on average from the shortest cycling path (Grond, 2016). Another study 
conducted using GPS traces of bike share trips in Hamilton, Ontario came to similar conclusions on this 
topic. The study found that the route most frequently chosen between a pair of bike share stations 
corresponded to the shortest path in as few as 7% of station pairs, but that the average difference 
between the route taken and the shortest path distance was about 10% (Lu et al., 2018). 

To confirm if this held for Bike Share Toronto, the shortest path distance between each pair of stations 
was first computed. Based on this shortest path route, an average speed was computed by dividing the 
route length by the duration of the trip. While there are some outliers, in general, the shortest path 
distance appears to be a reasonable approximation. When calculating the speed of each trip under the 
assumption that the shortest path distance was taken by the rider, the distribution of speed has a mean 
value of 11.3 km/h. This value is slightly slower than previous studies has found for average cycling 
speeds (Clarry et al., 2019) of around 18 km/h which indicates that users are likely taking a path slightly 
longer than the shortest path in addition to riding at slower speeds due to the heaviness of the bikes 
and the time it takes a user to adjust their bike before departing. Taken together, these results do 
support the use of the shortest path at an average speed of 12 km/h as a reasonable approximation of 
travel time where historical data in unavailable. 

An analysis of trips to and from station pairs found no clear trend between the duration of a trip and the 
elevation gain or loss meaning the trips were of similar duration in the direction they gained elevation as 
that where they lost elevation. For this reason, elevation was not added as a factor in the model. 
Similarly, precipitation was found to lower ridership globally on the system, this making the risk of 
station imbalances on a short time scale less likely. Precipitation impacts are not modelled but could be 
by applying a reduction factor when heavy precipitation is expected. 

 Rebalancing 

5.1 Detecting Real World Rebalancing Movements 

One of the goals of this analysis is to compare the real world operation of the Bike Share Toronto 
network with different theoretical operating methods. The procedure described below outlines how the 
observed, real world rebalancing operations were detected.  
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The dataset includes snapshots of the bike share system and a list of all trips taken. The detection was 
applied for each day within the analysis period. The model first identifies if there is an appropriate 
snapshot to use as the starting point for the analysis day. The model then searches for a snapshot at 
least two hours before the simulation world. The warmup world is initialized and the system simulates 
all the trips in the trip list until the target snapshot. The occupancy of each station in the world is then 
set to match the target snapshot. This yields a model world that is warmed up with trips in the expected 
arrivals matrix and with the observed occupancies. A simulation is then conducted until the end of the 
day that ignores capacity constraints. Ignoring capacity constraints allows stations to have occupancies 
above their capacities or to have occupancies below zero. At an hourly interval, the occupancies of the 
simulated stations are compared with snapshots of the system. The difference between these two sets 
of occupancies shows where the system operator has added or removed bikes. Since some minor 
discrepancies can occur between the snapshots and the simulated world arising from the rounding of 
travel times to the nearest minute, for example, a filter is then applied to look for changes in occupancy 
of three bikes or greater. These jumps are then logged in a list detailing the time and amount of 
observed rebalancing operations. 

In order to understand how well these rebalancing events work, the system simulates the day while 
enforcing capacity constraints and uses this generated list of observed rebalancing events as the basis 
for truck movements. In this way, the simulation provides details about the trips that still are delayed 
due to full or empty stations. In a perfect simulation this would be zero since the applied trip list shows 
trips that did happen on the network, making them all possible in reality. However, there still are 
discrepancies that result in some trips being rerouted. This effect is minor. 97.6% of all trips were 
completed in the capacity constrained simulation when the rebalancing truck trips were applied during 
the 268 days with available sufficient data to perform this analysis. 

5.2 Computing an Optimal Rebalancing Strategy 

The above section outlined the method used for detecting rebalancing within the network. With the 
benefit of perfect knowledge, meaning knowing the daily trip list in advance, can a more efficient 
rebalancing strategy be developed?  

The goal of the optimal rebalancing strategy is to find an optimal set of rebalancing operations which 
would satisfy all of the observed demand for a given day. In order to achieve this, the model system is 
initialized and warmed up in the same manner as it is in preparation for a simulation. The start time of 
the simulation is considered timestep zero. For each station on the network, an array is created to log 
the change in occupancy in each timestep of the simulation.  In this analysis, this is 24 hours or 1440 
timesteps, with each timestep representing one minute. First, the outstanding trips in the world from 
the model warmup are logged into this trip array. Next, all trips departing from the station are 
subtracted from their respective timesteps and all trips arriving to the station are added to their 
respective timesteps. The cumulative sum of the trips array is taken, yielding the cumulative change in 
occupancy at the station. The occupancy of the station at the start of the simulation, timestep zero, is 
then added to the cumulative sum to give an array with the projected occupancy at each timestep. 

This occupancy array is then checked for values below zero, or above the station’s capacity. If none are 
found, then the station is in balance for the day and no rebalancing operations need be performed. If a 
violation of the capacity check is found, then rebalancing planning is triggered.  

The first timestep with any capacity limit violations is evaluated. First, any broken bicycles at the station 
are removed, and then station capacity is updated. Then each rebalancing amount is evaluated, from 
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removing the full capacity to adding the full capacity. If the problem timestep has an occupancy above 
the station capacity, the maximum rebalancing is adjusted to zero. If the occupancy is below zero, the 
minimum rebalancing is set to zero. Each rebalancing amount in the range is evaluated by creating a 
new occupancy array for the timestep onwards. If a rebalancing amount is found that will satisfy the 
capacity constraints until the end of the simulation, that value is selected. If no value will satisfy the 
constraint until the end of the simulation, the value that maintains balance for the longest is chosen. 
This process is then repeated until the capacity constraint can be met for the full simulation period or 
until a maximum of ten iterations have been performed. 

The output of the algorithm is a table with the load needed to maintain balance at each station and the 
time window which these rebalancing operations must be performed. This load is fed into the 
dispatcher in order to execute these rebalancing operations from the optimal rebalancing strategy in a 
simulation. 

5.3 Building the Truck Routing Plan 

First a “naïve” truck rerouting plan is applied. This plan is not constrained by a number of trucks or 
optimized for efficient truck routing. This problem can then be formulated as a VRP. Solving a VRP in a 
closed form solution is complex and can be extremely computationally expensive. On a busy day in the 
Bike Share Toronto network, with 625 stations, there can be as many as 246 stations that need 
rebalancing. As several assumptions and conditions already exist within the formulation of the model, a 
heuristic solution is appropriate to apply. The Clark-Wright Savings Algorithm is a heuristic algorithm 
capable of providing a good solution to the VRP in a computationally efficient manor (Richard Larson & 
Amedeo Odoni, 1981). The object of the algorithm is to minimize the travel time of trucks performing 
the rebalancing operation by combining stops at different stations into tours. For computational 
efficiency, reducing the choice set of stations in the vehicle routing problem is key. 

Step 1 of the savings algorithm computes the travel time savings that could be realized by combining 
each pair of stations needing rebalancing. Step 2 sorts the savings from largest to smallest. Step 3 looks 
at the savings in order and combines stations into a tour if no constraints are violated. The constraints 
include the tour position constraint, the timing constraint, and the capacity constraint. The tour position 
constraint stipulates one of three conditions be met: that neither station is in a tour, that only one 
station is in a tour and the other station is at the start or end of the tour, or that both are in tours and 
both are at the start or end of the tour. The timing constraint stipulates that the proposed new tour 
must be possible given the delivery requirements for the rebalancing operations. The truck must be able 
to arrive at each station before the time the rebalancing is required with each tour starting and ending 
at the depot. In the case where there are multiple deliveries to a single station, each subsequent 
delivery must be after the previous one. The capacity constraint stipulates that the truck must not 
exceed its capacity or have below a capacity of zero at any point along the tour, considering the 
collection and delivery of bikes at stations along the tour. Step 3 is repeated until all pairs have been 
evaluated. 

The Bike Share Toronto network had 6,850 bikes in 2021 (Toronto Parking Authority, 2022). In a 
simulated day the total number of bikes observed on the network is less than 6,000 on most days and 
did not exceed 6,600 bikes in any day in 2021. For this reason, it is considered a reasonable assumption 
that a truck performing rebalancing operations can depart from the depot with any number of bikes and 
would not need to collect bikes from a station unless it was in need of rebalancing. 
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There is a Bike Share Toronto depot located at 25 Booth Ave in Toronto. It is assumed for the 
formulation of the vehicle routing problem that this is the one depot where all truck tours will start and 
end. Truck travel times between each pair of stations and between each station and the depot are 
estimated using the shortest path distance on Toronto’s road network and an assumed average travel 
speed of 30 km per hour. QGIS was used to compute the shortest path on the network. 

 Model Experiments 

The analysis examines three simulation scenarios for the Toronto Bike Share network. The first is a 
scenario where no rebalancing is conducted. This allows for a baseline measure with which to compare. 
This measure shows the number and duration of delays that would be experienced on the network 
without the system operator’s intervention. The second scenario uses the rebalancing actions observed 
on the network. This scenario shows how the system is operated in reality and provides a benchmark 
against which other scenarios can be assessed. Finally, the third scenario seeks to posit an optimized 
rebalancing strategy that is theoretically the most efficient at network rebalancing. 

All scenarios in this analysis use the observed trip list for the simulation. It is possible that the true 
demand is greater than this observed trip list. A user could arrive at a station and, finding it empty, 
choose to use a different mode of travel instead. In the simulations, 85% of empty station reroutings 
resulted in a delay of less than eight minutes. Rerouting trips may show up as other observed trips on 
the network where the user has chosen to walk to the nearest station. As there is no effective method 
or data available to quantify the number of such lost trips, the use of the observed trip list is considered 
to be valid for all of the simulation scenarios. 

This analysis examines each day independently. Each analysis day is reset to the observed state of the 
system at that point. Some stations tend towards imbalance over a longer time period. For example, 
station 7239 experiences an average net gain of 1 bike per day and has a capacity of 20. It follows that 
particular station would on average need to be rebalanced once every 20 days, but this will not 
necessarily be captured on any individual day of simulation. These stations do required rebalancing, but 
they are not considered in this analysis. Note that system operators can more easily plan for these trips, 
as they occur over a much longer time horizon. 

 Results 

The simulation of the Bike Share Toronto network was performed for each day in 2021. It was not 
possible to simulate certain days due to insufficient data. For the No Rebalancing scenario and then 
optimized rebalancing scenario, 345 days were simulated. For the observed rebalancing scenario, 268 
days were simulated. The number of days is lower because the observed rebalancing algorithm relies on 
a greater number of observed snapshots in order to detect rebalancing events. 

7.1 Overall Scenario Comparison 

Figure 1 shows a plot of the number of delayed trips, either due to a full or an empty station, plotted 
against the total number of trips on that day. As expected, days with higher ridership numbers have a 
greater number of delayed trips. There is a spread in the number of delayed trips at the higher end, 
suggesting that different ridership patterns impact the number of delayed trips. Figures 1 and 3 show 
the number of delayed trips and the total delay by day of the year. Figures 2 and 4 show the number of 
delayed trips and the total delay versus the number of trips observed on the date in question. The total 
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time delay and total number of trips are both significantly higher on days with higher trip counts. Higher 
trip counts are observed in warmer months.  

The optimized rebalancing algorithm does address nearly all needed rebalancing operations while the 
observed rebalancing scenario still has some amount of delay. Since all trips in the simulation are from 
observed trips, and were thus possible in reality, the delays in the observed rebalancing scenario are a 
result of imprecisions in the algorithm used to detect rebalancing. 

For the trips that are delayed by full stations, most are able to be rerouted effectively. Figure 5 show a 
histogram showing the distribution of the delays. The empty station delays have a large number which 
result in no delays. This is due to the fact that the station to which users rerouted had a shorter travel 
time, resulting in an arrival time no later than the originally predicted time. Where delays do result from 
empty stations, the delays do tend to be longer than those for full stations, which is to be expected since 
the delay includes extra walking instead of extra cycling. 

Figure 5 shows the distribution of delay length observed in each scenario. All three scenarios show a 
similar distribution in the length of delays arising from both full stations and empty stations. Delays from 
full stations are generally shorter with a mean delay in all three scenarios of 3.5 minutes. Delays from 
empty stations are longer with a mean delay range of 4.2 to 4.5 minutes. For empty-station delays, 
there are a significant number of observations of zero delay. As mentioned above, this is because there 
are many scenarios where the additional walking to a nearby station is offset by faster travel time along 
the updated cycling route. 

The distribution of these delays supports the assumption that the majority of delayed trips on the 
system are able to be rerouted. This indicates that the use of observed trips is appropriate, as trips are 
likely still present even if a user had to reroute. 

7.2 Scenario 1 No Rebalancing 

The spatial distribution of stations that most frequently required rebalancing when simulated in 2021 
show that as stations approach the core of the city, their chance of being full increases. This is expected 
as this is also where ridership is highest and where the greatest number of destinations are located. The 
spatial distribution of empty stations shows a very clear cluster in the northern part of downtown as 
well as near certain transit stations on the Yonge subway line and near Broadview subway station.  

7.3 Rebalancing Operations 

This section compares the rebalancing operations between the observed rebalancing and the optimized 
rebalancing scenarios. Figure 6 below shows a plot of the number of station rebalances in each 
simulated day for both the optimized and the observed rebalancing scenarios. Figures 7 and 8 show the 
number of bikes removed and added in each day respectively. The optimized scenario performs better, 
reducing the total number of rebalancing operations conducted. On average, the optimization scenario 
is able to reduce the number of rebalancing movements by 36% when compared with the observed 
rebalancing scenario. Figure 9 below shows a breakdown of the percent reduction in rebalancing 
movements. While some of the observed rebalancing operations may be addressing longer term 
imbalances that are not captured within a single day, this reduction shows that there are significant 
operational efficiencies to be gained by improved trip forecasting and optimizing rebalancing strategies. 
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7.4 Tour Lengths 

Section 7.3 described the reduction in the number of rebalancing operations in the optimized scenario 
when compared with the observed rebalancing. A similar reduction is noted in the truck tour length. 
This is significant because on the median day the total tour length for the observed rebalancing reaches 
1,058 km. Optimizing the rebalancing operation can reduce this tour length, thereby decreasing the 
emissions from truck traffic and lowering operational costs from person hours for operators. Figure 10 
below shows a breakdown of the percent reduction in tour length when applying the optimized 
rebalancing strategy. On average, a 36% reduction in travel distance is observed. There are some days 
where the tour length in the optimized case is greater than that of the observed rebalancing scenario, 
indicating that further improvements could be made to the optimization algorithm and truck routing.  

 Conclusions and Future Work 
 
Bike sharing systems are a flexible mobility option which have great potential in cities. In order to reach 
their potential, these systems must be effectively rebalanced to ensure that the users can start and end 
their rides at the most convenient location. This paper used a microsimulation model to simulate the 
operation of Bike Share Toronto in order to evaluate the impact of rebalancing and rebalancing strategy 
on delay experienced by users of the system. 
 
The analysis covers three rebalancing scenarios: (a) the “as is” condition using observed rebalancing 
operations; (b) a worst-case scenario where no rebalancing operations are conducted, and (c) an 
optimized scenario where rebalancing operations are planned with perfect knowledge of ridership 
patterns, offering a theoretical maximum efficiency to better understand how operations could be 
improved.  

The results of the model’s analysis show that the number and length of delays where a user must 
relocate to another station due full or empty stations decrease dramatically between the worst-case 
scenario and the “as is” scenario. Under the optimized scenario, users experience fewer delays and the 
tour lengths of the trucks performing rebalancing operations are 36% lower than in the “as is” scenario. 
These results highlight the potential for improved forecasting, route planning and rebalancing to reduce 
the Bike Share Torontos’s operating costs and improve user experience.
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Figures 

  

Figure 1: Plot of Total Number of Trips vs 
Number of Delayed Trips in a Day 

Figure 2: Plot of Number of Delayed Trips by 
Date 

  

  
Figure 3: Plot of Total Delay by Number of Trips Figure 4: Plot of Total Delay by Date 
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Figure 5: Distribution of Full and Empty Station Delays by Scenario 

 

 

Figure 6: Plot of Station Rebalances per Day 
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Figure 7: Plot of Number of Bikes Removed from 
Full Stations per Day 

Figure 8: Plot of Number of Bikes Added to 
Empty Stations per Day 

 

 
Figure 9: Distribution of Reduction in Daily Rebalancing Movements 

 
Figure 10: Distribution of the Reduction in Truck Travel Distance for Rebalancing 

 


