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ABSTRACT 
 

Traditionally, road assets are monitored and inventory controlled getting direct access to each 
asset, which can be very time-consuming and requires numerous field recordings and trained 
personnel. With recent advancements in data collection technologies, vehicle-based data 
collection platforms can collect millions of data points from all spatial directions at highway speed 
per second. The big data incorporates LiDAR point clouds, 360o degree imagery, and Laser Crack 
Measurement Sensor data. This paper presents the development of an innovative advanced 
machine learning algorithm capable of extracting roadside assets including traffic signs, 
guardrails, line painting, and rumble strips from the big database. The machine learning process 
starts with training steps in which hundreds of thousands of training datasets are used and then 
tested against the testing dataset. Once the testing database has passed at 99% or more, the 
trained program is ready to detect that asset. The techniques used to train machine learning 
algorithms to extract signs from the LiDAR database are developed using unsupervised clustering 
algorithm followed by autoclassification using machine learning classifiers with imagery. A similar 
approach has been taken to identify other assets such as guardrails, rumble strips, and line 
paintings. This process has been able to successfully identify and classify traffic signs from 
highways as well as urban and rural roads. The developed machine learning algorithm is 
programmed in parallel and performed at typical highway operation speed. Additional 
information about the geometry and retro-reflectivity properties are other important features 
that are also calculated and reported by this algorithm. The developed algorithm has been in 
production phase in the British Columbia Ministry of Transportations Asset Management project, 
in more than 13000 km of highways and has been able to pass all quality assurance mechanisms. 
This paper outlines the steps followed to develop a roadside asset extraction machine learning 
algorithm from the LiDAR and imagery database, as well as present a sample of the resultant 
roadway traffic sign asset database. 

KEYWORDS: Traffic signs, LiDAR, machine learning, Line painting marker 
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1. INTRODUCTION 
The roadway asset management is a crucial task for the Department of Transportation (DoT) to 
maintain the highest standard for road conditions and update them if necessary. The 
conventional methodology to update the asset inventory requires staff to have direct access to 
every single asset in person. This methodology is influenced by weather conditions and traffic 
flow, and requires traffic control to provide safety to the surveyors which might create traffic 
congestion (Kim et al., 2006). 

(Gao, 2009) proposed to use satellite and aerial imagery and Light Detection and Ranging 
(LiDAR) data to provide the inventory of roadway assets. Although satellite imagery and LiDAR 
data are very useful for roadway designs, the resolution of the commercial satellite imagery is far 
lower than what is required to detect smaller assets such as traffic signs, curb  and gutter, and 
guardrails (Singh & Garg, 2014). Nonetheless, aerial data collection is limited to the weather 
conditions and natural and man-made objects that might obstruct the aerial view of the roadway 
(e.g., trees, underpass, bridges). 

With more recent advancement in camera and LiDAR sensor technologies, the more 
recent methodology could provide detailed inventory of roadway auxiliary assets using data 
collected with terrestrial mobile mapping technology. A typical mobile mapping vehicle collects 
imagery from a single or multiple camera, and LiDAR point cloud data from two LiDAR sensors. 
The LiDAR dense point cloud provides millions of geolocated informative points collected from 
environments as far as 200 m. To post-process imagery and point cloud information, we are using 
the combination of an Inertial Measurement Unit and the Global Navigation Satellite Systems 
(GNSS) (Tawk et al., 2014). The inertially assisted positioning system provides more accurate 
positioning capability and augments the GNSS accuracy in places with poor GPS satellite coverage 
(Bostanci, 2015). 

Although mobile mapping has been in service for almost a decade, the asset identification 
from roadways, up until now, was done manually in an office environment. While this method is 
safer for the surveying crew and requires minimal traffic controls, asset identification is still very 
time-consuming and is influenced by human error (Lim et al., 2013). 

The advances in machine learning algorithm in image recognition prompted Tetra Tech 
Canada Inc.  (Tetra Tech) to automate the roadway asset extraction and recognition using in-
house developed a neural network algorithm. The neural network algorithm was initially 
introduced in the 1960s (Widrow & Hoff, 1962); however, due to recent evolution in 
computational power, these algorithms are being implemented in various industries such as 
defense, agriculture, and transportation (Puig et al., 2015). 

In this contribution, Tetra Tech has developed an algorithm that is able to automatically 
extract and recognize traffic signs from British Columbia’s network of highways using augmented 
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imagery and the LiDAR point cloud database. A semi-automated process is also introduced to 
detect and characterize other auxiliary assets such as line painting markers, curb and gutter, 
guardrails, cattle guards, and rumble strips. 

 

2. METHODOLOGY 
 

The methodology has been used by Tetra Tech to remotely inventory assets in near real-time 
with very high precision by incorporating it with integrated Pavement Surface Profiler (PSP) data. 
The PSP is a vehicle-based data collection platform that collects roadway corridor data and 
pavement condition data at normal driving speeds.  The assets were extracted primarily from the 
LiDAR and panoramic imagery collected by the PSP as it was gathering pavement condition data 
on British Columbia’s highway network (Figure 1-3). The use of LiDAR data collected in 
conjunction with the PSP’s highly accurate GPS referencing system allows for the most accurate 
methodology available to pinpoint the positional location of an asset, except for in-situ land 
surveying. 

 

Figure 1 Pavement Surface profiler platform comprises of (a) Inertial Laser Profiler (b) Distance 
Measurement Instrument (c) Right of the Way Camera (d) Panoramic Camera (e) two LiDAR 360o 
Sensors (f) Laser Crack Measurement System (g) Inertial Movement Unit and GPS. 
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Tetra Tech’s Trimble MX-8 and Reigl VUX LiDAR units incorporated into the PSP are some 
of the most accurate survey grade mobile LiDAR units available and can collect more than one 
million GPS referenced data points per second. The two 360o sensors in a cross-plane orientation 
minimize LiDAR shadow and provide a high-density point cloud with full coverage of the roadway 
corridor. All of Tetra Tech’s data is geo-referenced with an Applanix POS LV system ensuring that 
the location referencing of all images and LiDAR points used to confirm the inventory types is as 
accurate as possible. Based on inertially-aided GNSS or GPS technology, the POS LV provides 
robust continuous and accurate vehicle chassis position and orientation information even 
through areas of limited or poor GNSS coverage. 

 

 

 

Figure 2, High resolution panoramic image collected from Tetra Tech PSP-7000 mobile mapping 
at highway speed. This panoramic image gives the user unique access to look around at all 
directions even at very low-light. 
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Figure 3. LiDAR pointcloud data collected at highway speed displaying its optical intensity. Notice 
that the traffic signs are marked automatically using machine learning algorithm. 

 

2.1 Traffic Sign Extraction and recognition 

 

In this paper, Tetra Tech used an unsupervised clustering algorithm that can extract traffic signs 
using their geometrical properties (e.g., width, height, thickness) and the optical properties (e.g., 
intensity, reflectance, and amplitude). The clustering algorithm is then applied to the post-
processed LiDAR point cloud and separates traffic signs from the background. The background is 
introduced to the algorithm by providing numerous training point cloud and minimalistic 
meaningful thresholds. The background in the road environment includes cars, pavements, trees, 
bridges, pedestrians, and advertising banners. The density based spatial clustering algorithm of 
application with noise was developed by (Ester et al., 1996), with its application in noise 
cancellations. However, Tetra Tech found a unique application for this algorithm to identify traffic 
signs from a dense point cloud database. 

Figure 4, displays an example from TransCanada 1 Highway in Victoria Island, which 
illustrates imagery and point cloud information that are fed to the clustering algorithm to extract 
traffic signs. The extract information from traffic signs includes width, height, facing, distance to 
the road, vertical distance from pavement, and retro-reflectivity. This algorithm can measure the 
geometry and retro-reflectivity of traffic signs with great precision. The information about traffic 
signs is calculated in the office and on-the-fly using Tetra Tech’s Canadian servers faster than 
real-time. 
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Figure 4. a) Front-center view from MX-8 acquisition system, b) Pointcloud representation of 
traffic signs automatically extracted using machine learning algorithm. The vortex color indicates 
the retro-reflectivity of the traffic signs shown inside red rectangles. 

 

To recognize the category of each traffic sign we would need to be able to classify them 
based on their display properties (geometry, color, text). The North American Stop and Yield signs 
are the only ones with unique geometrical shape that we can detect and classify using solely 
LiDAR point cloud. However, for the rest of the traffic signs, it would be impossible to provide an 
automated classification solution. We can augment the point cloud database with additional 
imagery information and classify a wider range of traffic signs with the same shape, but with 
different text (e.g., speed limit sign with different posted speed limit). 

 

2.2 Traffic Sign Classification 

 

To understand the traffic sign classification, we extract the geometry (square, diamond, round, 
rectangle), color, and text from each traffic sign and create a training database for each traffic 
sign with images from various angles, lighting conditions, and distances. To create an inference 
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from the training database for each traffic sign, we have developed a machine learning algorithm 
that is built on top of Google’s Tensorflow machine learning infrastructure [NEED_SOURCE]. 
Figure 5 displays a portion of the training images that are used to recognize 100 km speed limit 
signs (code R-004--100km) that are collected by Tetra Tech from various cameras, angles, 
weather, and lighting conditions. The total amount, 576,000 of imagery information, was used to 
train the machine learning algorithm to classify more than 200 unique signs. 

The training algorithm uses a convolutional neural network algorithm Inception model V3 
(Szegedy et al., 2015) which takes in all images and true sign category labels and creates inference 
to categorize signs. This inference is then tested against a separate database labeled images that 
are not used in the training session. Upon successful classification of over 90% of the test 
database, the trained inference is used for classifying future traffic signs. 

 

Figure 5 Illustrating portion of training images used for 100 km speed limit sign that are used to 
recognize speed limits with posted 100km (code R-004—100km). The training database comprises 
of labeled images from collected from various angles and lighting conditions by Tetra Tech mobile 
mapping vehicles. 
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As part of quality control procedure, classified traffic signs are reviewed by a user that 
confirms automatic classifications as well rejecting mislabeling. The list of rejections is then 
pooled into the algorithm for a monthly update to the classifier and to avoid future mislabeling. 
This process is done through introducing negative sample images to the training database to let 
the algorithm learn from its mistakes. Having monthly updates to the machine learning 
algorithm, we could reduce the number of mistakes by the algorithm. 

 

2.3 Linear Assets Detection 

For linear assets, including guardrails, curb and gutters, and rumble strips, Tetra Tech developed 
a procedure to extract them from the LiDAR point cloud database. To extract them from the 
LiDAR point cloud database, we must transform the LiDAR point cloud from a geospatial domain 
to a domain we developed as ‘Van domain’. In the Van domain, the surrounding environment is 
nearby the collection van, as observed in Figure 6.  

Relative height with respect to the pavement plays an important role in detection and recognition 
of the linear assets. In the Van domain, the absolute height is replaced with relative height from 
pavement. 

 

 

Figure 6 Illustrates the geospatial to van domain transformation required to extract linear assets 
on the road using LiDAR pointcloud 
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The transformation allows us to pick linear assets such as guardrails, and curbs and gutters with 
height filtering and tagging them accordingly. Figure 7 displays guardrail detection from the 
LiDAR point cloud transformed into the Van domain using a linear asset detection algorithm. 

For other assets, we use recommended attributes that are more sensitive to the 
properties of the asset. Unlike guardrails and curbs and gutters that are visible in the relative 
height filter in the Van domain, LiDAR reflectance intensity is the attribute we found to be 
effective for line paint markings. The material properties of the pavement markers (e.g., glass 
bead coated paints) reflects most of the pulsed laser that it receives. We use this property to 
detect and classify line markers from the LiDAR point cloud in the Van domain. For extracting 
rumble strips, we propose a similar technique using the LiDAR point cloud inside the Van domain 
using spatial standard deviation attributes. 

Once the linear assets are extracted from the LiDAR point cloud in the Van domain, the 
extracted information is transformed into the geo-referenced geospatial domain and compiled 
into a GIS layer for transferability. 
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Figure 7 Guardrails detected from (a) imagery and (b) LiDAR pointcloud transformed into the Van 
domain collected by Tetra Tech PSP 7001 from TransCanada Highway 1 in Victoria. 
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Figure 8. Designed flowchart to extract roadway assets from LiDAR pointcloud and imagery 
information.  

 

3. APPLICATION OF ASSET EXTRACTION IN BC HIGHWAY NETWORK 

The British Columbia Ministry of Transportation and Infrastructure has been updating their 
Corporate Highway & Resource Information System (CHRIS) asset inventory data in preparation 
for the maintenance contract renewal process for British Columbia’s 28 Service Areas. The 
historical methodology for updating the asset data was monitored and inventoried manually by 
sending team members directly to access every single asset in person. This methodology is 
expensive and time-consuming. For this project, Tetra Tech continued its development on a 
robust automated and semi-automated asset extraction and classification methodology that 
would allow for the extraction and identification of the British Columbia Ministry of 
Transportation and Infrastructure’s roadway assets from a combination of LiDAR and imagery 
data. 

Tetra Tech used more than 13,000 km of LiDAR point clouds and panoramic imagery from 
British Columbia’s highway network with machine learning algorithms capable of extracting the 
roadway corridor assets. Tetra Tech inventoried all traffic signs, guardrails, curbs, line paintings 
and markers, rumble strips, safety features, and roadside facilities with over 98% accuracy. The 
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total assets for this project is approximately 65,000 traffic signs, 2,000 km of guardrails, 13,000 
km of rumble strips, and 20,000 of other corridor assets. 

 

4. CONCLUSION 
In this paper we introduced a machine algorithm to extract roadway assets from terrestrial 
mobile mapping database comprising 360o LiDAR and imagery. The roadway corridor asset 
inventory completed for this project using automated and semi-automated methodologies from 
the LiDAR data and panoramic imagery is less expensive and less time-consuming than the 
historical manual process. The data was collected by driving a single vehicle equipped with a 
mobile LiDAR unit and cameras along the highways at posted speeds.  The machine learning 
process starts by training the high-performance computers (HPC) to detect assets from the 
background using millions of positive and negative datasets. The smaller testing dataset is 
available which are separated from a training session that is implemented to test the quality of 
the trained inference. Once the trained inference finds 99% of the assets from the testing 
datasets that are detected, the trained program is ready to detect that asset from field data. The 
training process required a large amount of computing power and CPU and GPU memory that 
are available at the Tetra Tech HPC servers. The techniques used to train machine learning 
algorithms to extract traffic signs from the LiDAR database are to use an unsupervised clustering 
algorithm and then classify using machine learning classifiers with imagery. A similar approach 
has been taken to identify other assets such as guardrails, rumble strips, and line paintings. This 
process has been able to successfully identify and classify traffic signs from highways as well as 
urban and rural roads. 
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