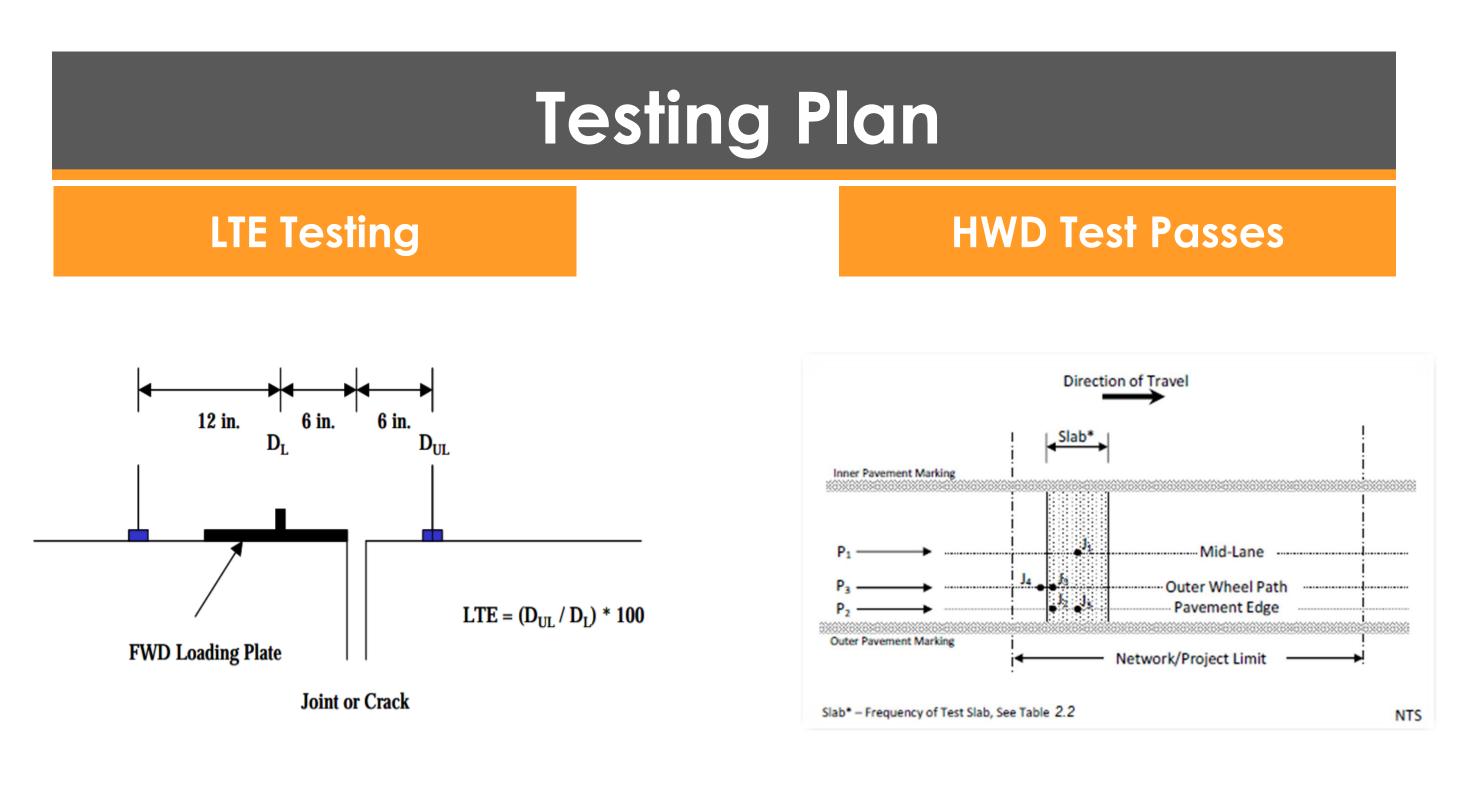
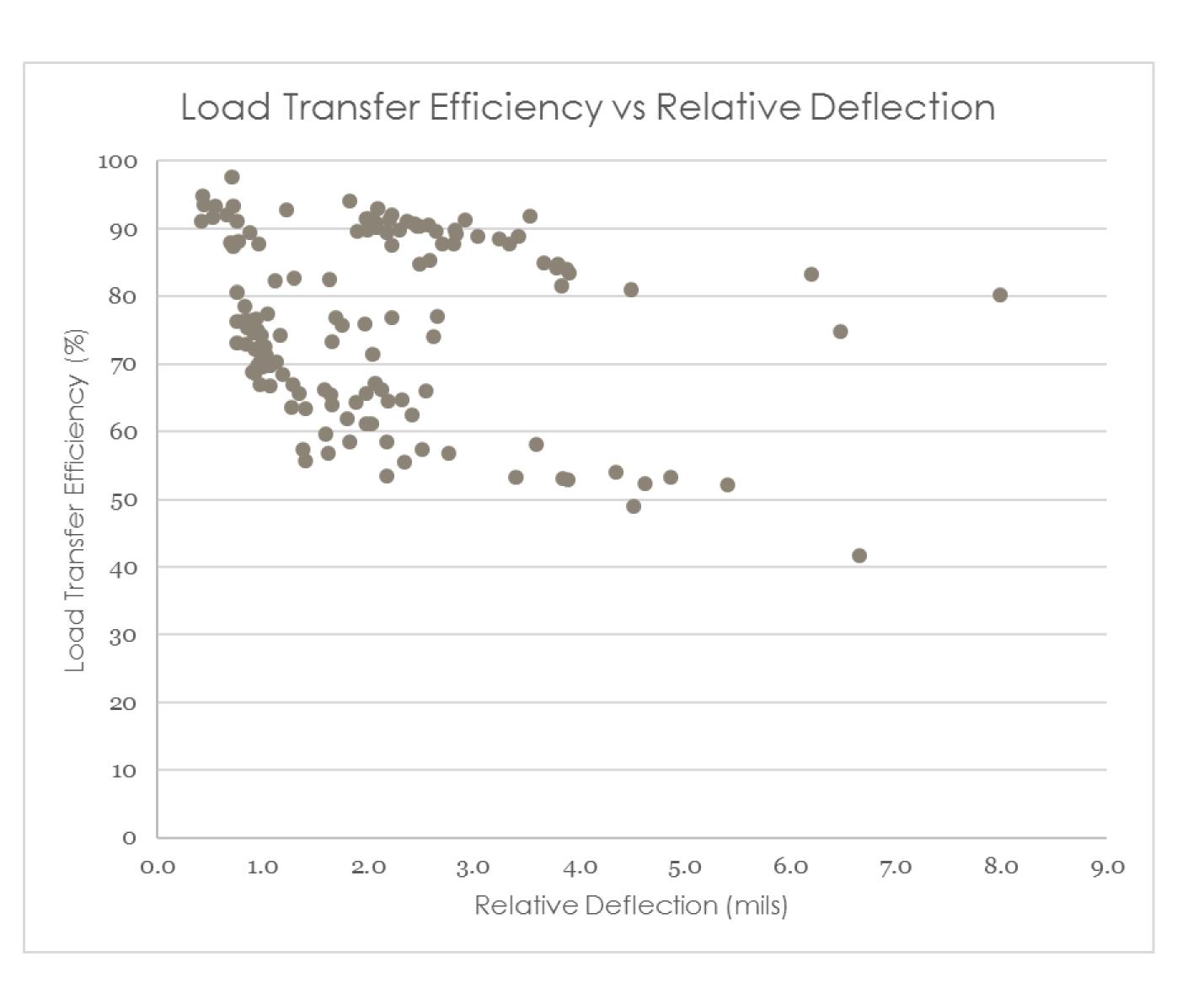
Hwy 401 Heavy Weight Deflectometer (HWD) Composite Pavement Research Study Dean Pettitt, P.Eng. Tony Wagner, CET


Richard Korczak, P.Eng.

Study Objective

- Asses if an increase in load level from an HWD provides better representation of the load transfer efficiency (LTE) at joints/cracks in composite pavements
- Determine if differential deflection analysis provides a better assessment of joint condition
- Review the existing composite pavement FWD testing protocols for potential improvements

Project Background


- 300-meter test section near Cornwall, ON
- Hwy 401 in the vicinity is a 4-lane divided highway (only tested Eastbound lanes)
- Originally constructed in 1963 as a 230 mm Joint Plain Concrete Pavement (JPCP) with dowels and 21.3 m (70-foot) joint spacing
- Overlaid in 1984 with 130 mm of Asphalt Concrete (AC)
- Rehabilitation treatment in 1999 consisted of milling 50 mm and overlaying 80 mm
- Total structure thickness 160 mm AC / 230 mm JPCP
- HWD testing performed on composite AC surface, and again on milled JPCP surface at same locations

	mvesngunon	rogiann						
Pass	Test Location	Frequency						
Mid-Lane	Mid-Slab	2 Tests Total						
Wheel Path	Transverse Cracks / Joints	100%						
Pavement Edge	Slab Corner and Edge	2 Tests Each						
Weight Package	e Target Load (kN)							
Regular	40, 53, and 71							
Heavy	100, 150, 2	100, 150, 200, and 250						
Field Observations								
Lane	Severity	Number of Cracks						
Truck Lane	Very Slight	12						
	Slight	10						
	Moderate	11						
	Severe	5						
	Very Severe	13						
	Very Slight	26						
Passing Lane	Slight	14						
	Moderate	6						
	Severe	9						
	Very Severe							

Data / Observations

Field Investigation Program

% Difference Heavy vs Low	Truck Lane		Passing Lane		
	Composite (# of Occ	Concrete urrences)	Composite (# of Occu		Total
25%+	1	_	_	_	1
10% to 25%	2	_	_	_	2
5% to 10%	2	_	5	_	4
-5% to 5%	5	6	12	15	38
-5% to -10%	_	_	-	1	1
-10% to -30%	_	_	-	_	0

for the composite vs concrete pavement

Crack Type	Passing Lane			Truck Lane		
	Min	Max	Average	Min	Max	Average
Original Joints	18%	34%	23%	-22%	57%	33%
Repaired Slab Joints	25%	30%	28%	-24%	44%	11%
Cracks	15%	57%	34%	18%	146%	66%
Saw Cuts	11%	27%	20%	_	_	_
Total	11%	57%	27%	-24%	146%	40%

- Increasing the load level had no visible correlation with load transfer efficiency values
- Weak correlation between load transfer efficiency and distress (composite and concrete surfaces)
- Composite load transfer efficiencies were approximately 32% lower than those completed on the concrete surface
- Relative deflection and the normalized load plate deflection increased at poor joints and high severity cracks (only relative to the joints / cracks in the same lane)
- Relative deflection and normalized load plate deflection values in the truck lane was twice as high as the passing lane It is recommended that any further studies be completed with varying asphalt thickness and tighter joint spacing to help determine the relationships between the composite
- load transfer efficiency and joint / crack condition

Analysis

Summary of the % difference of the load transfer efficiency for the heavy drops vs low drops of the joints

Summary of the percent difference of the load transfer efficiency

Conclusion

10 of the existing 31 joints were correctly identified as joints and 22 concrete cracks were incorrectly identified as joints