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ABSTRACT 

Vision-based monitoring systems using visible-spectrum (regular) video cameras can complement or 
substitute conventional sensors and provide rich positional and classification data. Recently, new 
camera technologies, including thermal video sensors, have become available and may improve the 
performance of digital video-based sensors. However, the performance of thermal cameras under 
various lighting and temperature conditions has rarely been evaluated at multimodal facilities including 
urban intersections, where road user classification is required. The purpose of this research is to 
integrate existing tracking and classification computer-vision methods for automated data collection and 
to evaluate the performance of thermal video sensors under varying lighting and temperature 
conditions. The evaluation is based on the detection, classification, and speed measurements of road 
users. For this purpose, thermal and regular video data was collected simultaneously under different 
conditions across multiple sites. Among the main findings, the results show that the regular-video 
sensor only narrowly outperformed the thermal sensor during daytime conditions. However, the 
performance of the thermal sensor is significantly better for low visibility and shadows conditions, in 
particular for pedestrian and cyclist data collection. Interestingly, the thermal video performs acceptably 
during daytime, with a miss rate around 5 %. This paper also shows the importance of retraining the 
algorithm on thermal data with an improvement in the global accuracy of 48 %. Moreover, speed 
measurements by the thermal camera were consistently more accurate than for the regular video at 
daytime and nighttime. The thermal videos are insensitive to lighting interference and pavement 
temperature, and solve the issues associated with visible light cameras for traffic data collection, 
especially for locations with pedestrians and cyclists. In addition, thermal sensors offer other benefits 
such as privacy, insensitivity to glare, storage space and lower processing requirements.  
 
Key words: thermal camera, infrared, computer vision, feature-based tracking, validation, data 
collection, confusion matrix           
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INTRODUCTION AND LITERATURE 

In transportation management, planning, and road safety, collecting data for both motorized and non-
motorized traffic is necessary (Robert, 2009). Collecting vehicle data was traditionally limited to manual 
data collection or inductive loops at fixed locations (Bahler et al., 1998), to the point that loops became 
standard in many jurisdictions and are still widely used today (Coifman, 2005). However, traditional 
loops do not provide any spatial coverage, and do not capture all road user types (loop detectors exist 
for bicycles but do not count vehicles or pedestrians). Trajectory data for all users (pedestrians, bicycles, 
and vehicles) is essential to understand microscopic behavior and surrogate safety analysis in critical 
road facilities such intersections with high non-motorized traffic volumes (Zangenehpour et al., 2016). 
These factors have spurred the development of non-intrusive traffic sensors of which video-based 
devices are among the most promising (Robert, 2009). Vision-based monitoring systems are widely used 
in ITS applications (Yoneyama et al., 2005), can complement or substitute conventional sensors (Cho & 
Rice, 2006), enable multiple lane detection (Bahler et al., 1998), and provide rich positional and 
classification data (Zangenehpoura et al., 2015) beyond the capabilities of traditional devices (Iwasaki et 
al., 2013).  

These benefits notwithstanding, there are several critical limitations associated with using 
regular video cameras, also referred to as visible spectrum video cameras, for traffic data collection. As 
these cameras rely on the visible light spectrum, the accuracy of detection, tracking, and classification is 
“sensitive to environmental factors such as lighting, shadow, and weather conditions” (Yoneyama et al., 
2005; Fu et al., 2015). Perhaps the greatest limitation of regular cameras is varied performance in low 
light conditions and darkness (Sangnoree & Chamnongthai, 2009). Considering detection and 
classification at nighttime, “the light sensitivity and contrast of the camera … are generally too weak” 
(Robert, 2009) to compensate for “the interference of illumination and blurriness” (Thi et al., 2008). This 
is particularly problematic because the increased injury risk associated with nighttime conditions leads 
to more, and more severe, road traffic crashes (Huang et al., 2000). During daytime, shadows and glare 
degrade the accuracy of extracted data (Yoneyama et al., 2005; Iwasaki et al., 2013). This is why typical 
computer vision approaches developed for daytime surveillance may not work under all conditions 
(Robert, 2009), and the advancement of vision-based traffic sensors is a pressing matter (Iwasaki et al., 
2013). 

Recently, new camera (sensor) technologies, including thermal or infrared sensors for traffic 
surveillance, have become available. Although the present cost of these cameras has prevented their 
widespread use in traffic analysis, cost will continue to decrease as the technology advances. 
Recognizing that it “is difficult to cope with all kinds of situations with a single approach” (Yoneyama et 
al., 2005), the performance of thermal cameras must be compared to regular cameras across varied 
lighting and visibility conditions to satisfy the desire for an “around-the-clock” video-based traffic sensor 
(Iwasaki et al., 2013). In recent years, various computer vision techniques for tracking, classification, and 
surrogate safety analysis have been developed (Zangenehpourb et al 2015; Saunier, Traffic Intelligence), 
though nearly all these methods were developed and tested using regular video cameras. It is unclear if 
these methods can be directly applied to thermal video and whether thermal cameras offer a 
performance advantage compared to regular cameras across lighting and temperature conditions.  

The purpose of this study is i) to integrate existing tracking and classification computer-vision 
methods for automated thermal-video data collection under low visibility conditions, nighttime and 
shadows and ii) to evaluate the performance of thermal video sensors under varying lighting and 
temperature conditions compared to visible light cameras. Performance is evaluated with respect to 
road user detection, classification, and vehicle speed measurements. Lighting and temperature 
conditions where each camera outperformed the other are identified to provide practical 
recommendations for the implementation of video-based sensors.  
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LITERATURE REVIEW 

The difficulties associated with collecting traffic data using regular cameras, and attempts to rectify 
these issues, have been well documented in the existing literature, though many existing studies do not 
appropriately report performance, be it for detection, classification, or tracking. Yoneyama et al. (2005) 
demonstrated that nighttime detection misses are up to 50 % and false alarms are 3.4 % of the ground 
truth total, much higher than for daytime detection. Robert (2009) showed that vehicle counts were 
accurate in various lighting, weather, and traffic conditions when using a headlight detection method, 
although sample sizes were generally 100 vehicles or less. Methods that detect headlights or taillights 
are typically only applicable at night, and the headlight detection method may increase the difficulty of 
vehicle classification (Iwasaki et al., 2013). Thi et al. (2008) proposed a methodology using eigenspaces 
and machine learning for classification from regular video at nighttime. The authors found a successful 
classification rate of 94 % compared to 70 % or lower for other classification schemes. Coifman et al. 
(1998) suggested that “to be an effective traffic surveillance tool … a video image processing system … 
should … function under a wide variety of lighting conditions”. The authors proposed feature-based 
tracking as an improvement over those methods dependent on identifying an entire vehicle, because 
even under different lighting or visibility conditions, “the most salient features at the given moment are 
tracked” (Coifman et al., 1998). The proposed algorithm was evaluated on highways where it was 
generally successful at tracking vehicles in congestion, shadow, and varying lighting conditions. 

With the limited success of regular cameras in adverse conditions, many researchers have 
considered alternative technologies for traffic data collection. Balsys, Valinevicius, and Eidukas (2009) 
identified that weather interference could be avoided using infrared (thermal) cameras, demonstrating 
that the cameras eliminated issues associated with headlight glare at night and cast shadows during the 
day. Thermal video demonstrated a 15 % improvement in detection rate over visible light cameras. 
Sangnoree and Chamnongthai (2009) presented a method for detecting, classifying, and measuring 
speeds of vehicles at night using thermal videos. Although classification and speed estimation were 
successful, detection worked best when only a single vehicle was present in the video frame (84 % 
success) but suffered when two or more vehicles were present (41-76 % success). Iwasaki (2008) 
developed a vision-based monitoring system that works robustly around-the-clock using infrared 
thermography. Iwasaki et al. (2013) achieved 96 % successful detection of vehicles using thermal video 
in poor visibility conditions. MacCarley et al. (2000) compared several infrared and visible light cameras, 
and found that many infrared cameras were “virtually immune to headlight or streetlight backscatter” 
and therefore performed best in darkness, fog, or the combination of darkness and fog. However, 
without fog or with light fog, the visible light camera outperformed infrared cameras, and “there 
appears to be a limited number of situations for which non-visible spectrum imaging appears to be 
justified”, including dense fog or scenes with glare or shadows (MacCarley et al., 2000). 

Thermal video has been used successfully for nighttime pedestrian detection, an area of 
particular importance because pedestrians may be less visible to drivers at night, and are therefore at a 
greater risk of collision (Huang et al., 2000). Xu et al. (2005) used a support vector machine (SVM) to 
detect and classify pedestrians using a thermal camera mounted to a moving vehicle. Although 
detection was successful in many cases, occlusion of pedestrians in heavy traffic was a significant 
limitation. Krotosky and Trivedi (2007) analyzed multiple camera technologies. Recognizing that regular 
and thermal cameras provide “disparate, yet complementary information about a scene”, the authors 

recommend combining visible light and infrared technologies (Krotosky & Trivedi, 2007).  
Despite this existing work, several shortcomings exist. Although several studies have addressed 

detecting vehicles or pedestrians, there has been limited work on detecting and classifying multiple road 
user types (including bicycles) from thermal video in mixed-traffic environments such as urban 
intersections. No studies have attempted to identify the effect of pavement temperature on the quality 
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of thermal video. Although thermal video sensors are promising, their performance must be 
comprehensively evaluated and the adaptation of existing computer vision software must be studied. 
Most studies do not appropriately report performance and cannot be reproduced since the software 
code and/or datasets are not available. Detection rate alone is too limited to represent performance. 
The whole confusion matrix should be presented and receiver operating characteristic (ROC) curves 
should be used to evaluate detectors or classifiers as parameters are adjusted. Separate data sets for 
calibration and performance measurements should be required. When available, researchers should use 
standard metrics such as the Measure of Tracking Accuracy (MOT) (Bernardin & Stiefelhagen, 2008). This 
research aims to address these gaps and integrate thermal sensors into existing data collection and 
safety tools, in particular under conditions where regular video presents limitations.  

METHODOLOGY 

The methodology considers three steps: i) technology integration and data collection, ii) implementation 
of detection and classification algorithms, and iii) vehicle speed validation.  

Technology Integration and Data Collection 

The two technologies involved in this study are thermal-video sensors with a resolution of 368 ×
296 pixels and visible-light cameras with a resolution of 1920 × 1080 pixels. The thermal camera 
system consists of a thermal sensor, a signal converter, and a power supply unit. Thermal video data is 
stored on a simple chip microcomputer (SCM). The thermal sensor, the ThermiCam by FLIR, is connected 
to an X-stream edge card that reads, converts, and outputs the thermal signal to a video file. The video 
file is then transferred to the SCM using an Ethernet connection where it is saved using the VLC Software 
(VideoLAN Organization). The camera and X-stream edge card are powered using a battery with an 12-
24 V output. The SCM, the battery and the X-stream edge card are placed in a small enclosure which can 
be easily installed for data collection. FIGURE 1 presents the components of the thermal camera system 
and a sample frame from the thermal camera recorded at night in FIGURE 1c. 
 

  
a) System components.        b) Enclosure & Installation        c) Sample video frame  

 
FIGURE 1  Thermal camera system*1 

 
Three primary sources of data are required: thermal video data, visible spectrum video data, 

and environmental and pavement temperature data. The regular visible-spectrum camera and thermal 
camera systems are installed simultaneously using a telescoping-fibreglass mast to ensure nearly 
identical fields of view. The regular camera system, as introduced in (Zangenehpourb et al., 2015), uses 
an inexpensive and commercially available video camera which stores video and is powered internally.  

                                                           
 
1
 Note that in the field, the battery, SCM and the TI X-stream are enclosed in a small waterproof case. 
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Since the road pavement is the primary background in the video scenes, pavement temperature 
is regarded as the main temperature variable affecting thermal video performance. Pavement 
temperature data were collected using the FLIR ONE thermal camera (FLIR Systems, Inc., 2015), which 
attaches to an iPhone to capture thermal video and temperatures using the FLIR ONE iPhone 
application. The camera was held close to the road surface to get the temperature as suggested in the 
user manual (FLIR Systems, Inc., 2014). Based on field-testing, the temperature measured by the FLIR 
ONE was within 2°C of the actual pavement temperature.  

Implementation of Detection and Classification Algorithms  

As thermal videos detect thermal energy, they are expected to solve the issues associated with visible 
light cameras under different lighting conditions. Existing detection and classification algorithms are 
used for automated data collection; however they need to be re-trained and evaluated under different 
lighting and temperature conditions. Additional details of the methods for detection, tracking and 
classification are presented in the next sub-sections. 

Detection and Tracking Algorithm 

The videos were processed using the tracker available in Traffic Intelligence, an open-source computer-
vision software project (Saunier & Sayed, 2006). Individual pixels are first detected and tracked from 
frame to frame, and recorded as feature trajectories using the Kanade-Lucas-Tomasi feature tracking 
algorithm (Shi & Tomasi, 1994). Feature trajectories are then grouped based on consistent common 
motion to identify unique road users. The techniques used in the tracker are further explained by Shi 
and Tomasi (Shi & Tomasi, 1994) and Saunier and Sayed (Saunier & Sayed, 2006). Algorithm parameters 
were calibrated through trial and error, in order to minimize both false alarms and misses. False alarms 
and misses respectively result mostly from over-segmentation (one user being tracked as multiple users) 
and over-grouping (multiple users being tracked as one user).  

Classification Algorithm and Algorithm Retraining 

Road user classification was performed using the method developed by Zangenehpour, Miranda-
Moreno, and Saunier (Zangenehpoura et al., 2015). Classifier V classifies detected road users as vehicles, 
pedestrians, or cyclists based on the combination of appearance, aggregate speed, speed frequency 
distribution and location in the scene. A SVM is used to learn the appearance of each road user type as 
described by the well-known Histogram Oriented Gradients (HoG). The SVM was trained based on a 
database containing 1500 regular images of each road user type. The overall accuracy of this 
classification method at intersections with high volumes and mixed road user traffic is approximately 93 
%, an improvement over simpler algorithms using only one or two classification cues (Zangenehpoura et 
al., 2015). The classifiers are available in Traffic Intelligence (Saunier, Traffic Intelligence). For more 
details regarding the original classification method, readers are referred to (Zangenehpoura et al., 2015). 

Considering that the classifier uses the appearance of the road user as a parameter, and the fact 
that road users in thermal videos appear quite differently than they do in visible light videos, the SVM 
classifier for appearance classification, as part of the Classifier V (Zangenehpoura et al., 2015) that is 
used in this study, needs to be retrained on a dataset of thermal images for all road user types. Although 
the shape and proportions of the road users should be roughly equivalent, it is unclear how their 
appearance described by HOG varies between the visible and thermal images. Furthermore, the reduced 
resolution of the thermal video may impact the classification performance as less information and fewer 
details are available. The accuracy of the classification algorithm must therefore be explored further. 
This study used a database containing 1500 thermal images from several videos (separate from the 
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videos used for performance evaluation) for each type of road user to train the SVM and compared the 
classification rate using the SVM trained respectively on the regular and the thermal dataset. 

Detection and Classification Performance Metrics 

The detection and classification performance are measured using different metrics and by extracting 
video data from frames every 10 seconds. This corresponds to 150 frames considering a frame rate of 
15 frames per second, fps). Data (detection, user class and speed) is then extracted by observing the 
results of the tracking and classification algorithms and compared visually with the ground truth. The 
interval of 10 s was chosen to be large enough in order to avoid evaluating the same road user twice. 
Most road users are tracked less than 10 s continuously as the tracking algorithm tracks only moving 
road users (if stopped, a road user is not tracked anymore: tracking resumes when the road user starts 
moving again): trajectories are typically less than 5 s long for vehicles, and less than 10 s for pedestrians 
and cyclists. Also, 10 s is short enough to provide enough observations to evaluate the detection and 
classification performance. For each extracted frames, detection and classification errors are counted as 
shown in FIGURE 2. 
 

 
  

FIGURE 2  Video Sampling and Data Extraction for Detection & Classification Performance 
 

Different metrics are computed to evaluate the performance of thermal vs regular video. For 
the classification problem, the confusion matrix is used to investigate the technology performance and 
derive metrics. In the general case with N classes, the confusion matrix is a 𝑁 × 𝑁 matrix that contains 
in each cell 𝑐𝑖𝑗  the number of objects of true class 𝑖 predicted as class 𝑗. The detection & tracking step 

can be also evaluated as a binary classification problem (a matrix with N=2 classes, miss and detected), 
where the class of objects to be detected is the positive class. The matrix in this binary case is presented 
in TABLE 1 with the particular names taken by the instances depending on their true and predicted class. 
Misses are the false negatives and false alarms are the false positives.  

The most common metric is the global accuracy defined as the proportion of correct predictions: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝐶𝑘𝑘

∑ ∑ 𝐶𝑖𝑗𝑗𝑖
       (1) 

 
The majority of existing studies have used global accuracy to measure classification performance, both 

Frame t 

Frame t+150 

Extracted Frame and Errors 

a 

b 
c 

c 

d 

a 

c 
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for road user detection and classification methods. This is however insufficient to properly report the 
performance, both for two-class classification, i.e. detection (since false alarms are not accounted for by 
a single detection rate) and for classification with three and more classes such as in multimodal 
environments, e.g. with pedestrians, cyclists, and vehicles. As used widely in the field of machine 
learning, this study relied on the confusion matrix to derive the following disaggregate metrics per class:  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 =
𝐶𝑘𝑘

∑ 𝐶𝑖𝑘𝑖
       (2) 

  

𝑅𝑒𝑐𝑎𝑙𝑙𝑘 =
𝐶𝑘𝑘

∑ 𝐶𝑘𝑗𝑗
        (3) 

 

In the case of a binary classification problem, precision and recall are typically reported only for the 
positive class, and can be written in terms of true/false positives/negatives as follows: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑐11

𝑐11+𝑐21
     (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑐11

𝑐11+𝑐12
                                                                     (5) 

 

From which, the miss rate can be derived as, 𝑚𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 =  1 − 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
.; 

The above metrics are computed by populating the confusion matrix through the visual assessment of 
each frame every 10 s or 150 frames as shown in FIGURE 2. Since pedestrians often move in groups, and 
detecting and tracking individual pedestrians within groups is difficult (and actually an open problem in 
all conditions in computer vision), the unit of analysis is individual pedestrians or groups of pedestrians. 
In FIGURE 2, the groups of pedestrians labeled c (over-grouping) is then considered correctly detected. 
Miss rate is the main metric reported for detection performance used for all test cases in the 
experimental results, while precision and recall at the individual level, overall and per known (true) type 
of road user, are also reported for two test cases for a more complete assessment. 

The road user classification problem has three classes: pedestrians, cyclists and vehicles. 
Precision and recall are reported for each class, as well as global accuracy, from the confusion matrix 
accumulated over all frames used for performance evaluation. 

 
TABLE 1 Corresponding Table of Confusion & Basic Terms from Confusion Matrix 

 

 
Predicted class 

 
Positive Negative 

True class 
Positive True Positives (TP) False Negatives (FN) 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Negative False Positives (FP) True Negatives (TN)  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   

 

Vehicle Speed Validation 

Once road users have been detected and classified, parameters such as vehicle speed are of interest for 
traffic studies. Many existing studies have used mean relative error (MRE) to quantify the error of video 
speeds extracted automatically from video. However, a previous study by Anderson-Trocmé et al. (2015) 
showed that it “is insufficient at capturing the true behaviour of detectors and other measures are 
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necessary to define device precision and accuracy separately”, where accuracy is the systematic error or 
bias, and precision is the residual error. However, because video-based sensors tend to overestimate 
speed, and because this overestimation is roughly constant with respect to speed, simple methods for 
calculating relative precision error and relative accuracy error were developed. 

The vehicle speed validation process begins by plotting automatically extracted speeds against 
manually measured speeds (speeds calculated based on known distances and video frame rate) in order 
to observe trends across visibility and temperature conditions. The line y=x represents ideal detector 
performance, and data points above the line indicate overestimation of speed, while points below the 
line indicate underestimation. As the overestimation bias is typically constant, a line with slope equal to 
one is fitted to the data. The y-intercept and R-squared values of this fitted line represent accuracy and 
precision respectively. However, converting these results to relative error values “matches the approach 
utilized in existing literature, and provides an intuitive and communicable comparison” between 
multiple environments (Anderson-Trocme et al., 2015). Relative precision error (RPE) is quantified 
similarly to mean relative error, with the subtraction of a correction factor equal to the y-intercept of 
the fitted line. To normalize the intercept value consistently with the relative mean error, the y-
intercept is evaluated at every data point (divided by the harmonic mean of observed speed) for the 
relative accuracy error (RAE). The RAE represents the over- or under-estimation bias present in the 
video data. The RPE can be seen as the best possible performance that could be expected from 
calibrated video data (Anderson-Trocme et al., 2015). Values for relative error, relative precision and 
accuracy error are calculated as 
 

𝑀𝑒𝑎𝑛 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑅𝐸) =  
1

100
∑

|𝑉𝑒−𝑉𝑜| 

𝑉𝑜
      (6) 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑃𝐸)  =  
1

100
∑

|(𝑉𝑒−𝑦 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)−𝑉𝑜| 

𝑉𝑜
   (7) 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐸𝑟𝑟𝑜𝑟 (𝑅𝐴𝐸) =
1

100
∑

|𝑦 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡| 

𝑉𝑜
                                          (8) 

 
Where 𝑉𝑒 and 𝑉𝑜 stands for the automatically extracted and manually measured speeds respectively.  

DATA DESCRIPTION 

To evaluate the performance of the thermal and regular cameras, 14 test cases (camera installations), 
with approximately one to four hours of video data for each case, were used. The lighting test cases, 
presented in TABLE 2, include videos during the day and at night. Daytime test cases focussed on various 
sun exposures and shadow conditions, while nighttime test cases focussed on the level of visibility, with 
one case in near complete darkness, one nearly completely illuminated, and one in between. Speed 
performance was evaluated on a sample size of 100 vehicles for each test case, while classification and 
detection performance was evaluated on 30 minutes of sample videos. 

A similar approach was adopted for the temperature test cases, shown in TABLE 3. To evaluate 
detection and classification performance under different temperature conditions, thermal video data 
were collected from the same site with the same camera angle throughout a sunny summer day when 
the pavement temperature rose from 20°C in the morning to 50°C in the afternoon. Data collected from 
the same site in winter when the pavement temperature was close to 0°C was included. As with the 
lighting test cases, speed performance was evaluated on a 100-vehicle sample, and classification and 
detection performance was evaluated on 20 minute video samples. In TABLE 3, the thermal images 
change drastically from cold to hot pavement temperature. Road users are light on a dark background 
when the pavement temperature is low, and dark on a light background when the temperature is high.  
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TABLE 2  Summary of Lighting Test Cases 

Lighting Condition 

VEHICLE SPEED   CLASSIFICATION 

Sample Size Season Road Type   Video Length Season Road type 

Daytime 

Overcast 

100 vehicles 

Winter 

Segment 

  

Every 10 s for 
30 minutes 

Summer Intersection 

Sun, little shadow Spring 
 

Summer Intersection 

Sun, slight shadows Spring 
 

N/A N/A 

Sun, strong shadows Summer 
 

Summer Intersection 

Nighttime 

High visibility 

100 vehicles Spring 

Segment   
Every 10 s for 
30 minutes 

Winter Intersection Medium visibility Intersection 
 

Low visibility Intersection   

SAMPLE CAMERA VIEWS UNDER DIFFERENT LIGHTING CONDITIONS 

Daytime 
Conditions 

Thermal Camera Regular Camera 
Nighttime 
Conditions 

Thermal Camera Regular Camera 

Overcast 

  

High 
visibility 

  

Sun, little 
shadow 

  

Medium 
visibility 

  

Sun, 
strong 
shadows 

 

 

Low 
visibility 
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TABLE 3  Summary of Temperature Test Cases 

Pavement Temp. Ambient Temp. Sample Size Season Road Type 

VEHICLE SPEED 

0 °C- 5°C ~   0 °C 

100 vehicles 

Winter Segment 

20 °C-25°C ~ 20 °C Summer Segment 

25 °C-30°C ~ 20 °C Summer Segment 

30 °C-35°C ~ 20 °C Summer Segment 

35 °C-40°C ~ 20 °C Summer Segment 

40 °C-45°C ~ 20 °C Summer Intersection 

CLASSIFICATION 

0 °C- 5°C ~   0 °C 

Every 10 s (150 
frames) for 20 
minutes 

Winter 

Intersection 

20 °C-25°C ~ 20 °C Summer 

25 °C-30°C ~ 20 °C Summer 

30 °C-35°C ~ 20 °C Summer 

35 °C-40°C ~ 20 °C Summer 

40 °C-45°C ~ 20 °C Summer 

45 °C-50°C ~ 20 °C Summer 

SAMPLE CAMERA VIEWS UNDER DIFFERENT TEMPERATURE 

Pavement Temp. Camera View Pavement Temp. Camera View 

0°C- 5°C 

 

35°C-40°C 

 

20°C-25°C 

 

40°C-45°C 

 

25°C-30°C 

 

45°C-50°C 

 

30°C-35°C 
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RESULTS 

Detection and Classification 

Lighting  

Results of detection and classification for the thermal and regular video are presented in TABLE 4 for the 
lighting test cases. The thermal camera reported a miss rate of 5 % or less for all road user types in 
nearly all test cases. While the vehicle miss rate of the regular camera was also lower than 5 % in all test 
cases, the rate increased significantly for pedestrians and cyclists in all nighttime test cases, where very 
few pedestrians and cyclists were detected with the regular camera (more than 75 %). Vehicles were 
well detected by both technologies under all conditions, possibly because their lit headlights and larger 
size provide more features for tracking compared to pedestrians and cyclists. In conditions without 
interference of darkness or shadows (test cases of “overcast” and “sun, little shadow”), excellent 
performance was obtained for the regular videos. However, daytime cases with shadows showed a 
decrease in performance, as shadows inhibit the tracking and detection of pedestrians, cyclists, and 
some vehicles. The miss rates of pedestrians and cyclists both increased to around 15 %, 10 % points 
higher than those in the thermal videos. 
 For classification performance, the measures of recall and precision are also presented in TABLE 
4. Higher values of recall and precision in classifying vehicles using regular videos indicate that, in 
general, the performance of classifying vehicles was improved when using the regular camera over the 
thermal camera. However, from medium to low visibility conditions, regular cameras perform poorly in 
the classification of cyclists and pedestrians. For cases with medium and low visibility specifically, the 
algorithm failed to recognize pedestrians and cyclists in regular videos. In such cases, since classification 
is performed only for tracked road users, computing the precision may not be possible when no road 
user of the class was detected or representative if too few were detected. Thermal videos perform 
reliably in nighttime cases, even when using the classification algorithm trained on the regular, or visible 
spectrum, images of road users. In daytime conditions, the classification of pedestrians and cyclists is 
only slightly better by regular camera, as the global accuracy values are slightly higher in regular videos 
than those in thermal videos in most cases. The classification performance per class indicates the need 
for improving the classification algorithm for thermal videos by training the algorithm on images from 
thermal cameras. Nevertheless, even with the algorithm trained only on regular video data, the thermal 
camera correctly classifies road users more often in low visibility conditions, especially at nighttime. 
 A more complete detection performance evaluation, in particular for individual pedestrians, is 
reported for two extreme test cases: i) the sunny daytime case without the interference of shadow, 
which has the best lighting environment, presented in TABLE 5, and, ii) the worst lighting condition case 
shown in TABLE 5, which is nighttime condition with low visibility. From the results, the thermal camera 
and the regular camera perform similarly well in detecting different road users in the good lighting 
environment. For low visibility condition at night, the two camera systems have similar capability in 
detecting vehicles; however, the regular camera failed to detect the cyclists and pedestrians under such 
a low visibility condition (low recall) where the thermal camera can still work efficiently – this is in 
accordance with the previous analysis. With similar performance for good lighting conditions and much 
better performance for low visibility conditions, compared to the visible spectrum camera system, 
thermal cameras can be used for all weather and lighting conditions. 
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TABLE 4  Detection and Classification Performance for Different Lighting Conditions – Thermal and Regular Video 1 

2 

Lighting Condition 

THERMAL VIDEO     REGULAR  VIDEO     

No. of 
Presence  

No. of Missed/ 
Miss Rate 

 
Classification 
Precision 

Classification 
Recall 

No. of 
Presence 

No. of Missed/ 
Miss Rate 

 
Classification 
Precision 

Classification Recall 

  
Vehicle Detection and Classification 

Daytime 

Overcast 121 0 / 0.0 %  53.3 % 97.0 % 192 0 / 0.0 %  78.9 % 99.3 % 

Sun, little shadow 52 2 / 3.8 %  46.3 % 100.0 % 74 0 / 0.0 %  67.9 % 100.0 % 

Sun, strong 
shadows 

77 0 / 0.0 %  44.2 % 100.0 % 83 3 / 3.6 %  55.0 % 100.0 % 

Nighttime 

High visibility 102 1 / 1.0 %  66.7 % 91.2 % 102 4 / 3.9 %  74.5 % 97.6 % 

Medium visibility 249 4 / 1.6 %  99.0 % 96.2 % 241 11 / 4.6 %  97.2 % 99.5 % 

Low visibility 42 1 / 2.4 %  56.3 % 96.4 % 42 2 / 4.8 %  91.4 % 100.0 % 

  
Cyclist Detection and Classification 

Daytime 

Overcast 26 1 / 3.8 %  36.1 % 81.3 % 38 1 / 2.6 %  30.9 % 96.7 % 

Sun, little shadow 46 1 / 2.2 %  95.8 % 54.8 % 57 4 / 7.0 %  87.8 % 78.3 % 

Sun, strong 
shadows 

68 4 / 5.9 %  90.3 % 50.0 % 67 11 / 16.4 %  63.0 % 68.0 % 

High visibility 44 1 / 2.3 %  70.2 % 93.0 % 44 36 / 81.8 %  42.9 % 37.5 % 

Nighttime 
Medium visibility 12 0 / 0.0 %  64.7 % 100.0 % 12 12 / 100.0 %  0.0 % Invalid 

Low visibility 10 0 / 0.0 %  69.2 % 90.0 % 10 10 / 100.0 %  Invalid Invalid 

 
Pedestrian Detection and Classification 

Daytime 
Overcast 314 9 / 2.9 %  98.3 % 68.5 % 356 14 / 3.9 %  99.1 % 68.3 % 

Sun, little shadow 78 2 / 2.6 %  82.1 % 56.1 % 63 0 / 0.0 %  93.8 % 66.2 % 

Sun, strong 
shadows 

118 9 / 7.6 %  100.0 % 46.8 % 130 19/ 14.6 %  86.6 % 59.2 % 

Nighttime 

High visibility 149 5 / 3.4 %  97.8 % 68.9 % 149 109 / 73.1 %  90.0 % 25.7 % 

Medium visibility 85 3 / 3.5 %  94.5 % 94.5 % 77 68 / 88.3 %  100.0 % 14.3 % 

Low visibility 286 4 / 1.4 %  99.5 % 89.5 % 286 278 / 97.2 %  Invalid 0.0 % 

 
Total Detection and Classification 

  
      Accuracy       Accuracy 

Daytime 

Overcast 461 10 / 2.2 %  74.9 % 586 15 / 2.6 %  79.1 % 

Sun, little shadow 176 5 / 1.8 %  66.2 % 194 4 / 2.1 %  80.2 % 

Sun, strong 
shadows 

263 13 / 4.9 %  62.8 % 280 33 / 11.8 %  69.1 % 

High visibility 295 7 / 2.4 %  79.4 % 295 159 / 50.5 %  74.0 % 

Nighttime 
Medium visibility 346 7 / 2.0 %  96.1 % 330 91 / 27.6 %  96.8 % 

Low visibility 338 5/ 1.5 %  90.3 % 338 290 / 85.8 %  91.4 % 



14 
 

 TABLE 5  Detection Performance Results – Test Case: Nighttime, Low Visibility 
 

Test Cases Camera 
Precision Recall 

Vehicle Cyclist Pedestrian Overall Vehicle Cyclist Pedestrian Overall 

Sun, little shadow 
Thermal Camera 66.3 % 98.5 % 94.2 % 86.8 % 93.0 % 82.3 % 79.0 % 82.8 % 

Regular Camera 65.2 % 94.4 % 97.8 % 81.5 % 95.6 % 91.1 % 81.3 % 88.5 % 

Night, low visibility 
Thermal Camera 57.7 % 100 % 99.7 % 91.6 % 97.6 % 100 % 75.1 % 77.8 % 

Regular Camera 64.5 % Invalid 88.9 % 67.6 % 95.2 % 0 % 2.1 % 11.1 % 

Temperature 

The classifier trained on the thermal dataset was applied in the different temperature test cases where 
the outputs of the thermal videos changed greatly with the change of temperature. TABLE 6 presents 
the results of detection and classification performance for the classifier trained on the regular or 
thermal dataset for each test case. Again, the thermal video provided detection rates exceeding 95 % for 
nearly all test cases, and temperature had little impact on detecting different road users. Even when the 
pavement temperature approaches that of the road users, miss rate remained low. Observing the 
videos, temperature variation within each road user likely explains this good performance: features are 
still detected for the areas of high and low temperature within road users. 

Although miss rate was low, classification results were generally poor before retraining the 
algorithm, and classification accuracy reduced systematically as temperature increased from 90.3 % in 
the lowest temperature case to 30.8 % in the highest. This result indicates that, for the thermal video, 
the object appearance described by HoG (Zangenehpoura et al., 2015) varies with pavement 
temperature, and therefore the SVM should be trained on thermal images to account for the different 
appearance of road users. The classification accuracy after the new training showed improvements, 
particularly at higher pavement temperatures. At 45-50 °C, overall classification accuracy improved by 
48.6 % points –from accuracy of 30.8 to 79.4 %. The excellent performance of detection and the higher 
classification accuracy rates for the algorithm trained on thermal data indicate the possibility of using 
this algorithm to correctly detect and classify different types of road users under different temperature 
conditions.  
 Looking at the per-class performance measures, better recall and precision were found in almost 
all temperature cases for vehicles and pedestrians when using the algorithm trained with thermal data 
(with an average increase of 26.3 % points in precision for vehicles, and an average increase of 24.1 % 
points in recall and 22.2 % points in precision for pedestrians). The recall for cyclists increases in all cases 
by 39.5 % points on average; however, precision decreases in most of the cases by 10.1 % points on 
average. This is explained by considering that, before training the algorithm on thermal data, a smaller 
portion of the detected cyclists are successfully classified which leads to a deceptively high precision. In 
other words, fewer cyclists were classified as such by the algorithm trained with regular videos, but the 
algorithm made few mistakes, and the other cyclists were classified as pedestrians or vehicles resulting 
in lower precision for these road user types. With a the newly trained algorithm, more road users, 
including actual cyclists are classified as cyclists, which increases cyclist recall; but in doing so, more 
vehicles and pedestrians are also misclassified as cyclists, causing a decrease in cyclist precision. A 
general issue for both types of cameras is confusing pedestrians and cyclists since they have similar 
appearances. Global accuracy improved by as much as 50 % points in the multimodal environments. 
Moreover, the % point improvement was larger for high temperature cases, indicating that training the 
algorithm for data collection using thermal videos is both necessary and effective. 
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TABLE 6 Detection and Classification Performance for Different Pavement Temperatures – Thermal Camera 

Pavement 
Temp. 

No. of 
Presence 

No. of Missed 
/Miss Rate 

Classifier Trained on  
Regular data 

Classifier Trained on  
Thermal data 

Improvement 
(% points) 

Precision Recall Precision Recall Precision Recall 

 
Vehicle Detection and Classification 

0 °C- 5°C 42 1 / 2.4 % 56.3 % 96.4 % 67.4 % 96.7 % 11.2 % 0.2 % 

20 °C-25°C 58 0 / 0.0 % 89.1 % 100.0 % 96.1 % 100.0 % 7.0 % 0.0 % 

25 °C-30°C 37 2 / 5.4 % 67.6 % 100.0 % 83.9 % 100.0 % 16.2 % 0.0 % 

30 °C-35°C 20 0 / 0.0 % 27.9 % 100.0 % 68.4 % 100.0 % 40.5 % 0.0 % 

35 °C-40°C 45 1 / 2.2 % 35.6 % 100.0 % 67.5 % 100.0 % 31.9 % 0.0 % 

40 °C-45°C 31 1 / 3.2 % 23.6 % 100.0 % 65.4 % 100.0 % 41.7 % 0.0 % 

45 °C-50°C 19 0 / 0.0 % 12.1 % 100.0 % 47.6 % 100.0 % 35.5 % 0.0 % 

Average  44.6 % 99.5 % 70.9 % 99.5 % 26.3  % 0.0 % 

 
Cyclist Detection and Classification 

0 °C- 5°C 10 0 / 0.0 % 69.2 % 90.0 % 64.3 % 100.0 % -4.9 % 10.0 % 

20 °C-25°C 33 0 / 0.0 % 72.1 % 96.9 % 64.6 % 96.9 % -7.5 % 0.0 % 

25 °C-30°C 22 0 / 0.0 % 70.0 % 46.7 % 70.8 % 94.4 % 0.8 % 47.8 % 

30 °C-35°C 36 0 / 0.0 % 93.8 % 51.7 % 75.8 % 86.2 % -18.0 % 34.5 % 

35 °C-40°C 27 2 / 7.4 % 88.9 % 33.3 % 67.9 % 76.0 % -21.0 % 42.7 % 

40 °C-45°C 40 0 / 0.0 % 88.9 % 22.9 % 83.8 % 86.1 % -5.1 % 63.3 % 

45 °C-50°C 26 0 / 0.0 % 100.0 % 6.7 % 85.0 % 85.0 % -15.0 % 78.3 % 

Average  83.3 % 49.7 % 73.2 % 89.2 % -10.1 % 39.5 % 

 
Pedestrian Detection and Classification 

0 °C- 5°C 286 4 / 1.4 % 99.5 % 89.5 % 100.0 % 92.0 % 0.5 % 2.5 % 

20 °C-25°C 71 0 / 0.0 % 100.0 % 66.0 % 100.0 % 66.7 % 0.0 % 0.7 % 

25 °C-30°C 39 0 / 0.0 % 86.4 % 67.9 % 100.0 % 66.7 % 13.6 % -1.2 % 

30 °C-35°C 53 3 / 5.7 % 75.0 % 42.9 % 97.0 % 74.4 % 22.0 % 31.6 % 

35 °C-40°C 51 2 / 3.9 % 62.5 % 12.5 % 96.7 % 63.0 % 34.2 % 50.5 % 

40 °C-45°C 44 2 / 4.5 % 50.0 % 23.3 % 96.3 % 70.3 % 46.3 % 46.9 % 

45 °C-50°C 44 2 / 4.5 % 61.1 % 33.3 % 100.0 % 71.1 % 38.9 % 37.7 % 

Average  76.4  % 47.9 % 98.6 % 72.0 % 22.2 % 24.1 % 

 
Total Detection and Classification 

   Accuracy Accuracy Accuracy 

0 °C- 5°C 338 5 / 1.5 % 90.3 % 92.8 % 2.6 % 

20 °C-25°C 162 0 / 0.0 % 86.3 % 85.9 % -0.3 % 

25 °C-30°C 98 3 / 3.1 % 74.2 % 84.4 % 10.2 % 

30 °C-35°C 109 3 / 2.7 % 54.2 % 82.4 % 28.1 % 

35 °C-40°C 123 5 / 4.1 % 43.3 % 76.5 % 33.2 % 

40 °C-45°C 115 3 / 2.6 % 35.9 % 82.2 % 46.3 % 

45 °C-50°C 89 2 / 2.2 % 30.8 % 79.4 % 48.6 % 

Average  59.3 % 83.4 % 24.1 % 



16 
 

Vehicle Speed Validation 

To compare the performance of the camera systems in vehicle speed extraction accuracy, a data 
visualization exercise was completed for all test cases. One example, shown in FIGURE 3, demonstrates 
the performance of the two camera systems under sun with strong shadows. 
 

 

FIGURE 3  Example of vehicle speed estimation performance for thermal and regular cameras under 
sun with strong shadows  

Speed and Lighting  

TABLE 7 provides the equation of the fitted line, its R-squared value, MRE, RAE, and RPE for each lighting 
conditions test case. The first important observation was that the intercept value in nearly all test cases 
was positive for both technologies. This result is consistent with previous research and shows that video 
sensors tend to overestimate speeds (Anderson-Trocme et al., 2015). The R-square values for thermal 
video are significantly higher for daytime with shadows as well as median and low visibility conditions. 
RPE is perhaps the most critical values in TABLE 7. The thermal camera had a lower RPE in all test cases 
other than overcast sky, in which the regular camera was expected to perform well without lighting 
interference. In the other test cases, the thermal video consistently provided a 2-3 % points 
improvement in RPE over the regular camera. Despite this good performance, the RAE was highly 
variable both across conditions and across cameras. This again supports previous research, and indicates 
that the overestimation bias is less a function of camera or conditions as it as a function of user 
calibration error (Anderson-Trocme et al., 2015). In general, the RPE was within 5-10 % of ground truth, 
which is consistent with previously measured performance of video sensors (Anderson-Trocme et al., 
2015). 

Speed and Temperature  

Similarly for the temperature test cases, parameters of the fitted line and the segregated relative errors 
values are presented in TABLE 8. The RPE for all but one test case was 0.06 or less, and was not observed 
to vary greatly with temperature. For one test case (35-40°C), several outliers greatly increased the 
reported error. A slight increase in RPE was noted between 20 and 30°C. These pavement temperatures 
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most closely match the surface temperature of vehicles, and so a slight performance decrease may be 
explained by tracking issues associated with the low contrast associated with the pavement 
temperature. Despite the slight effect of temperature, the thermal videos performed reliably and 
consistently across all temperature test cases, with errors equal to what is expected from existing 
research. Thermal videos can be an effective substitute for regular videos with regards to speed data 
extraction under various lighting and temperature conditions. 

TABLE 7  Vehicle Speed Performance for Different Lighting Conditions – Thermal and Regular Video 

  
THERMAL VIDEO REGULAR VIDEO 

Lighting Condition Calibration Model R
2
  Calibration Model R

2
 

Daytime 

Overcast y = x - 1.97 0.91  y = x - 0.04 0.95 

Sun, little shadow y = x + 2.91 0.96  y = x + 1.77 0.92 

Sun, slight shadows y = x + 2.50 0.93  y = x + 5.75 0.90 

Sun, strong shadows y = x + 0.20 0.88  y = x - 2.00 0.56 

Nighttime 

High visibility y = x + 4.49 0.93  y = x + 0.01 0.92 

Medium visibility y = x + 2.45 0.86  y = x + 4.14 0.46 

Low visibility y = x + 0.17 0.97  y = x + 0.83 0.93 

  
THERMAL VIDEO REGULAR VIDEO 

Lighting Condition MRE RAE RPE MRE RAE RPE 

Daytime 

Overcast 0.067 0.058 0.067 0.059 0.001 0.059 

Sun, little shadow 0.106 0.116 0.045 0.069 0.071 0.062 

Sun, slight shadows 0.103 0.105 0.047 0.226 0.242 0.063 

Sun, strong shadows 0.061 0.005 0.061 0.108 0.053 0.097 

Nighttime 

High visibility 0.150 0.151 0.047 0.051 0.000 0.051 

Medium visibility 0.104 0.082 0.072 0.150 0.138 0.104 

Low visibility 0.036 0.026 0.033 0.060 0.005 0.059 

TABLE 8 Vehicle Speed Performance for Different Pavement Temperature – Thermal Video 

Pavement Temp. Calibration Model R
2
 MRE RAE RPE 

0°C- 5°C y = x + 2.50 0.930 0.103 0.105 0.047 

20°C-25°C y = x + 0.20 0.870 0.061 0.005 0.061 

25°C-30°C y = x + 1.52 0.770 0.066 0.039 0.056 

30°C-35°C y = x + 2.88 0.830 0.106 0.087 0.046 

35°C-40°C y = x + 2.63 0.930 0.103 0.126 0.114 

40°C-45°C y = x + 2.48 0.900 0.087 0.081 0.058 

CONCLUSIONS 

This paper presents an approach to integrate and evaluate the performance of thermal and visible light 
videos for the automated collection and traffic data extraction under various lighting and temperature 
conditions in urban intersections with high pedestrian and bicycle traffic. The two technologies were 
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evaluated in terms of road user detection, classification, and vehicle speed estimation. Considering the 
above results, several key conclusions are drawn. 
 

1) The regular camera only narrowly outperformed the thermal camera in terms of detection and 
classification of all road users during daytime conditions. Also, the regular camera detects and 
classifies vehicles adequately under nighttime conditions. However, the performance of the 
regular camera deteriorates for pedestrians and cyclists in all nighttime test cases, while miss 
rate by the thermal camera remained around 5 %, showing stability across the tested 
conditions. 

2) Based on the results at the individual level from the two test cases, the two cameras performed 
similarly in the favorable case; while for the night, low visibility case, the advantage of using 
thermal camera was more significant compared to the results at the group level. 

3) Training of the classifier to account for variation in the appearance of road users in the thermal 
video was observed to increase classification performance (recall, precision, and global 
accuracy) for the thermal camera, particularly at higher temperatures. Training the algorithm 
using more thermal videos is expected to improve the classification performance by thermal 
video also during the day, where the thermal camera was slightly inferior to regular video. 

4) Speed measurements by the thermal camera were consistently more accurate than 
measurements by the regular video. Additionally, speed measurement accuracy was observed 
to be generally insensitive to lighting and temperature conditions. 

 
Summarizing these points, regular video works well for “overcast” and “sun, little shadow” 

conditions without lighting interference such as shadow, glare, low visibility, or reflection. The thermal 
camera performs similarly in these conditions (although classification must be improved by training the 
algorithm on thermal data). However, with shadows or at night, the performance of the regular camera 
was greatly reduced, and the thermal camera was superior in terms of detection, classification, and 
vehicle speed measurement. The thermal videos are insensitive to lighting interference, and solve the 
issues associated with visible light cameras for traffic data collection, especially for active road users 
such as pedestrians and cyclists. The thermal camera is also generally insensitive to the effects of 
pavement temperature. Thermal videos are more reliable and stable compared to regular videos in an 
around-the-clock collection campaign. Furthermore, greyscale thermal videos with lower resolution 
provide comparable results during the day, yet require less storage space and processing power, which 
are key concerns. Finally, thermal videos cause no privacy issues, which are a major hurdle for the 
application of video-based sensors, especially in the U.S. and European countries. 

As part of its contributions, this paper provides an approach for integrating existing tracking and 
classification algorithms for automated thermal video collection and analysis under varied lighting and 
weather conditions. The proposed approach can be used for automated counting, speed studies and 
surrogate safety analyses in particular during low visibility conditions and in environments with high 
pedestrian and bicycle traffic activity.  

Though general improvement of the classification performance was achieved by training the 
classifier on thermal data, the results (average 83.4 % global accuracy over all cases, in TABLE 6) are 
lower than what has been reported previously for regular videos (93.3 %) (Zangenehpoura et al., 2015). 
Reasons for this reduced performance must be considered in future work, including lower resolution of 
thermal videos, and the need for more training image samples of road users under different 
temperature conditions. Validation of the classification algorithms on thermal videos will be better 
characterized using the ROC curve to compare different methods over several parameter settings. 
Although past literature shows visual improvements when using thermal cameras in foggy conditions, 
no work has been done to quantify the improvement of thermal videos during adverse weather 
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conditions. The evaluation of thermal video in adverse weather conditions, such as heavy precipitation 
and fog, is a key focus of future work. Finally, a hybrid system that combines the advantages of both 
technologies can be designed to automatically calibrate and process video data from both thermal and 
visible spectrum sensors.    
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