The Cost Implications of Using Various Flexible Pavement Design Methodologies for Canadian Municipalities Alain Duclos, P.Eng. Senior Pavement Engineer, LVM, M.Sc. Candidate Susan L. Tighe, PhD, P.Eng., Professor and Canada Research Chair $Centre\ for\ Pavement\ and\ Transportation\ Technology,\ University\ of\ Waterloo,\ ON,\ Canada$ Introduction • Pavement design methodologies have evolved quite rapidly over the past 30 years • Adoption of these new techniques has varied significantly by Canadian municipalities • Current pavement design methodologies used vary from experiential/empirical based design methodologies to more modern mechanistic-empirical based designs | Example Experiential Design
MTO SDO-90 | | Design Example Empirical Design
MTO MI-183/AASHTO 93 | | Example Mechanistic-Empirical
Design DARWin-ME/MEPDG | | |---|---|---|---|---|--| | Summary of F | lexible Pavem | ent Design Methods Used in | Car | nada [1] | | | AGENCY GENER | | L DESIGN METHODS | | DESIGN LIFE (years)
New/Rehabilitation | | | BC | AASHTO 93 | | | 20/20 | | | AB | | AASHTO 93 | \neg | 20/10-20 | | | SK | Shell Method
Asphalt Institute | | 15/15 | | | | MB | AASHTO 93/MPEDG
CGRA/MEPDG | | | 20/20 | | | ON | AASHTO 93
OPAC
Routine (Empirical) Method | | Major Highways: 18-22/1
Other Projects: 12-15/10 | | | | QC | AASHTO 93
Chaussee 2 | | | Major Highways: 30/15-30
Other Projects: 25/15-25 | | | NB | AASHTO 93
Rebound Values | | | 20/15 | | | PEI | Asphalt Institute | | П | 20/12 | | | NS | S AASHTO 93
Correlation Charts | | | 20/15 | | | NL | Sta | mdard Sections Used | П | 20/15 | | | Yukon | State o | f Alaska Design Method | | 20/12 | | | PWGSC | AASHTO 93 | | \neg | 20/12 | | ## Study Design - As pavement design technology has evolved, it has allowed the design of thinner, longer lasting and more reliable pavements The objective of the study is to try and quantify the cost benefits of using new design methodologies The result will enable municipal engineers to select the most appropriate design method for their district. | Performance | Road Class (King's Highways and
Freeways or Secondary
Highways)/Region (Northern or
Southern Cutano) | Initial Servicesbility and Terminal
Servicesbility | Initial IRI, Terminal IRI | |--|---|---|--| | Traffic
Characterization | AADT, Truck Percentage | AADT, 14 Tracks, Lese
Distribution Factor, Traffic
Grawth, Vehicle Classes/Track
Factor, Directional Distribution,
Performance Period | AADTY, Lase Distribution Factor,
Treffic Green's, Disconnous Distribution
Valuele Classes (Axie Spectra, Axie
Specing), Treffic Wander (Lase Wolds,
Mean Wheel Location, Standard
Droisbon), Farfamanote Period | | Subgrade
Clamification | Laboratory Classification (Orain Size
Analysis, Planticity Index) | Laboratory Classification (MTC
Classification), Back-calculation
from FWD Testing | Laboratory Classification (MTC
Classification), Back-calculation from
FWD Testing | | Pavement Structural
Materials
Characterization | Consular Base Equivalency | Structural Layer Coefficients | Laboratory Classification (Oranillar
Base/Jobbase Mg Testing), Back-
calculation from FWD Testing | | Reliability | - | Design Reliability, Standard
Deviation | Design Reliability Levels | | Drainage | Engineering Judgement | Drainage Coefficient | Automatically incorporated into distress
prediction | | Environment | - | - | AASHTOWere Compatible Local
Weather Station | | Distress Prediction
Modelling | - | - | Default values or adjustments based on | ### Case Examples - Case Examples To compare design methods, three different pavement design types were considered New volume local/collector road medium volume arterial road high volume major arterial road Common design inputs were used to show how the pavement structural design differ The design types represent typical municipal road classes and show the sensitivity of the design methods to different traffic volumes and compositions | | Inputs t | Ised For Each | Design | | |---|---|---|---------------------------------------|--------------------------------------| | sign Notes | | Local | Minor Arterial | Major Arteria | | DO-90 is limited to 130
n of HMA for traffic > 400 | Parament Performance
500-90
Mi-103
MIPOG | Kings Highway
42/20
10:12:33 | Kings Highway
4.4, 2.2
1.0, 2.7 | Kings Highwa
4.5, 2.5
1.0, 2.3 | | | Torte | 1912.55 | 10.27 | 10.10 | | rule of thumb of 30 | Analysis Period | 260 | 12 Years | 165 | | or each x 2 of | Number of Days
AACT | 1500 | 10000 | 50000 | | | %Trucks | 2.0% | 7.5% | 10.0% | | sed to estimate | AADTT | 30 | 750 | 5000 | | 1A thickness | Number of Lanes | 2 2 | 100 | 400 | | | Lane Distribution Factor | 1 | 0.9 | 0.6 | | and MEPDG | Directional Distribution | 50% | 50% | 50% | | | Truck Classes (Mi-182)
Operating Speed | | Table 0-2 | 79 | | ired SSM | Axia Configuration/Wander | | Detect | | | d on | Axie Spectra | | 6 or use MTO (Corrido | | | | Axis Specing
Subscrafe Type | Tandem, 1.45 | Triden, 168, Qued. | 1.32 | | ment | 500-96 | Sity Clay to C | Dayer Sit & PS mm > | 15%) | | e class of | MI-183
MEROG | 40 MPs ber | ed on PWD or Table 0 | 1-8 | | | MEPOS
Material Characteristics | 40 MPs base | ed on FWO or Table 25 | 1-51 | | ing speed | 500-99 | | GRE | | | renath | Mi-183 | | Table 0-9 | | | | MEPOS
Recobility | | Tuble 22 - 28 | | | e SSM in | Mi-183 (Design Finlability) | 80 | 90 | 95 | | e effective | Mi-183 (Standard Deviation) | | 0.49 | 95 | | | MEPOG (Retability)
Drainage | - 25 | 90 | - 95 | | IS | 500.99 | | neering Judgement | | | ich | M-183 | Drainage Coefficien | t in Structural Design. | Table D-10 | | lich | Environment
MERNO | Important Codese | from Ontario Climate I | Indicas | | | Distress Modeling | | | | | | MI-183
MERRYS | Pavement Overstressing
Interested Default Volum. Extension Starty for Local California | | | | | MEPOG | Integrated Default Values | Extensive Study for I | ,ocal Calibration | | 183 designs, the effective
grade modulus was
reased by 1.20 which
uced design SN | | M-103 (Dandard Deviation)
M-103 (Standard Deviation)
MEPOS (Standard)
Distinage
500.00
M-103
Environment
MEPOS | Drainage Coeff | 2.6 90 95 Engineering Julgament Drainage Coefficier in Struttural Onsign. Table 0-19 Imported Online from Ontain: Climate Stations Pawment Oversities State for Local California Integrated Celebrat Volume, Estember State for Local California | | | |---|--------------------|---|----------------------|--|---|--| | | | Distress Modeling
Mi-180
MEPDG | Integrated Default V | | | | | Calculated Pavemen | | | | | | | | | SDO-90 | MTO | H-183 | MEPDG | _ | | | Hot-mix Asphalt | 50 | 70 |) | 50 | | | | Granular Base | 150 | 10 | 0 | 150 | | | | Granular Subbase | 450 | 17 | 5 | 200 | | | | Design Value | 552 (GBE) | 57 (SN) | | | | | | Calculated Pavemen | nt Structural Thio | knesses for a Majo | r Arterial Roa | d | | | | | SDO-90 | мто м | 1-183 | MEPDG | | | | Hot-mix Asphalt | 250 | 230 | | 250 | | | | Granular Base 150 | | 150 | | 150 | | | | | | | | | | | | | SDO-90 | MEPDG | | |--------------------------|------------|----------|-----| | Hot-mix Asphalt | 160 | 150 | 160 | | Granular Base | 150 | 150 | 150 | | Granular Subbase | 800 | 100 | 150 | | Select Subgrade Material | | 450 | 450 | | Design Value | 1006 (GBE) | 101 (SN) | | ### Analysis Results - Analysis Results Initial cost of construction calculated using 2012 cost data The mixes specified in the MEPDG designs were also used in the SDO-90 and MI-183 designs to make initial costs comparable The costs are based on one lane kilometre of roadway, 3.75 m wide Dilletrence in Initial Cost of Construction | | SDO-90 | MTO MI-183 | MEPDO | |----------------|--------|------------|-------| | Local Road | 20.2% | 3.2% | - | | Minor Arterial | 16.7% | - | 1.3% | | Major Arterial | 9.5% | - | 2.8% | | | 300-90 | M110 M1-183 | MEFDG | |---|--------|----------------------------|-------------------| | Local Road | 20.2% | 3.2% | - | | Minor Arterial | 16.7% | - | 1.3% | | Major Arterial | 9.5% | - | 2.8% | | - The lowest cost in eac
percentage increase cor | | a dash while the other cos | ts are shown as a | - The lowest cost in each group is shown with a dash while the other costs are shown as a percent cost of the o