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Abstract 
 

Work zone traffic management poses a significant challenge due to the need to minimize traffic 

delays while maintaining a safe environment for workers. In order to effectively manage traffic 

through work zones, it is necessary to understand how delays are affected by both internal and 

external factors, such as the work zone's design characteristics, road geometry, weather 

conditions, and traffic conditions. Despite the literature's attention to modeling work zone delays, 

most studies are limited to analyzing data from a small number of work zones and consider 

limited travel time observations. Macroscopic travel time prediction is also a key focus of 

existing literature. To address those gaps and provide a better understanding of factors affecting 

delay in work zones, this study uses a big dataset consisting of 15 million travel time 

observations collected every 2-3 minutes at 624 work zones located between the western borders 

of Alberta and Vancouver, BC. A microscopic delay analysis was performed whereby the impact 

of spatial, temporal, environmental, and segment-related variables on work zone delays was 

assessed using ordinal logistic regression. Based on the model statistics, high delays were 

associated with hourly traffic volume, peak hours, weekend travel, length of the work zone, and 

summertime, whereas precipitation affected delays in the opposite direction.  
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Introduction 

Highway networks are the backbone of transportation infrastructure, facilitating the movement of 

people and goods across the world. The construction and maintenance of highways, roads, and 

bridges are essential for ensuring the safe and efficient movement of people and goods. 

However, work zones, where construction activities such as paving, patching, and utility works 

are carried out, can cause significant traffic delays, putting workers and drivers at risk. For 

instance, sudden lane closures, narrowed roads, and reduced speed limits can cause congestion, 

leading to longer travel times and increased travel costs. Additionally, construction sites can 

expose workers to hazards such as moving vehicles and heavy machinery, which can result in 

serious injuries or fatalities. According to a report by the United States Department of 

Transportation Federal Highway Administration (FHWA) [1], work zones result in a loss of 60 

million vehicles per hours of capacity. Therefore, it is essential to effectively manage traffic 

delays through work zones to ensure the safety of workers and minimize the impact on drivers. 

Effective management requires accurate measurement and estimation of anticipated delays and 

proactive monitoring of their causes. A better understanding of the factors that impact travel time 

through work zones can help in developing effective traffic management strategies that improve 

safety and reduce the impact on drivers. 

The aim of this paper is to model the relationship between travel time through work zones and 

several internal and external factors, including work zone length, temporal factors, 

environmental factors, and traffic-related factors. This study uses a big dataset, which captures 

travel time observations every 2-3 minutes from 624 work zones between 2021 and 2022. This 

comprehensive dataset enables a microscopic analysis of variation in delay within the same day, 

across different days during a week, and on different days during a month. Unlike previous work, 

this study employs an ordinal logistic regression model and provides insights into the impacts of 

season and weather conditions on work zone delay, which has not been explored in most 

previous studies. The primary goal of this study is to provide a more comprehensive 

understanding of the factors impacting travel time through work zones, ultimately leading to 

more effective traffic management and improved safety for workers and drivers.  

Previous Work 

Various factors have been investigated in connection with the impact of delays in work zones. 

Meng and Weng's [2] model showed that the length of the transition area has a far more 

significant effect on traffic delay than the length of the activity area in a work zone, particularly 

in light traffic conditions. Hou et al. [3] studied traffic flow and developed a model based on 

work zone data from freeways and signalized arterials in St. Louis, Missouri, USA. The most 

influential factors affecting traffic flow varied based on the type of road, with the latest interval's 

look-back traffic flows at upstream, downstream, and current sites, or traffic flows from the three 

preceding intervals at the current site being the most significant factors. Du et al. [4], [5] used 

data obtained from probe vehicles to forecast work zone delays. Their research involved 430 

work zones across multiple freeways in New Jersey during 2014. Factors examined in this 

research included the count of closed lanes, total lanes, work zone length, average upstream 

traffic speed, upstream traffic volume, heavy vehicle percentage, work duration, and starting and 

ending times. The second study involved 181 work zones on various New Jersey freeways. The 

model's effectiveness was assessed in three instances with lengths of 3.6, 0.5, and 0.3 km. The 
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gathered data was limited to short segments with observations over a brief period. Abdelmohsen 

and El-Rayes [6] employed an innovative approach to minimize crash probabilities and delay by 

determining the ideal values for work zone characteristics. The model sought to identify the best 

values for work zone speed limit, initiation time, shoulder use, lateral clearance, length, access 

and egress methods, and temporary traffic control measures. To achieve minimal traffic delays, 

the multi-objective optimization model established the maximum value for work zone speed 

limit, initiation time, shoulder use, and minimum segment length. Conversely, minimizing crash 

indexes required the opposite approach. Similarly, they presented an optimization model for 

reducing work zone delays and lowering construction costs [7]. 

In a study that considered both work zone features and non-work zone-related variables, Kamyab 

et al. [8] utilized historical lane closure data and to predict spatiotemporal mobility for upcoming 

lane closures. The research initially focused on cases where hourly traffic volume was 

unavailable, using the distribution of historical traffic speed as an alternative baseline for 

mobility. Modeling data was collected from 1160 work zones on Michigan interstates between 

2014 and 2017. The authors employed probe vehicle data to obtain a mobility profile for 

historical observations. The three models' inputs included work zone configuration and features 

such as the number of open lanes, closed lanes, segment length, distance to lane closure location, 

roadway geometry, Annual Average Daily Traffic (AADT), and spatial and temporal aspects like 

month, day of the week, and hour of the day. The most effective model achieved an accuracy of 

85%. 

To determine the impact of work zones on non-recurrent delay separately, Chung [9], [10] used 

one year (2009) archive data from Korea’s freeways. The model used a dataset of 20,078 records 

gathered for 14 major freeways in Korea. It included work zone duration, traffic volume, work 

zone length, number of closed lanes, total number of lanes, type of work (e.g., weeding/planting, 

patching, lane marking, and facility maintenance), work zone location (e.g., tunnel, shoulder, 

bridge, and main lane). The results showed that the number of closed lanes, average daily delay, 

work zone length, and work zone duration directly impact the delay caused by work zones.  

Mashhadi et al. [11] reviewed 40 studies from 1981-2019 on estimating work zone capacity 

rather than travel time and delay. They reported heavy vehicle percentage, work zone grade, 

work zone intensity, rural or urban roads, number of open lanes, number of closed lanes, work 

zone duration, work time, lane width, lane closure location (left/right), work zone length, 

weather condition, driver composition and population, existence of ramp, work zone speed limit, 

normal speed, weekday, and lateral clearance as the most common predictors of work zone 

capacity in previous studies. Another review by Weng and Meng [12] also overviews the factors 

impacting work zone capacity. More specifically, Bian and Ozbay [13] attempted to predict work 

zone capacity using multiple variables. They considered five factors in their study: total number 

of lanes, number of open lanes, heavy vehicle percentage, work intensity, and work duration. 

They used data from 225 work zones on freeways in Maryland, Oregon, Texas, Indiana, South 

Carolina, Kansas, and Missouri. In a similar study, Weng et al. [14]  used road type, number of 

closed lanes, number of open lanes, lane closure location, heavy vehicle percentage, work 

intensity, work duration, work time (daytime or night-time), capacity measurement method, and 

year of data collection to study capacity of work zones. 

While several studies have attempted to model work zone delays, but they often fall short in 

understanding the relationship between explanatory variables and delay. Many of these studies 

are limited by the number of observations and small datasets, hindering the examination of 



Page 5 of 13 

 

variables' impacts on microscopic work zone delay. Furthermore, some studies have used 

estimated capacity information instead of observed data when developing travel time prediction 

models. Additionally, data from previous studies were collected across different corridors, 

introducing multiple confounding factors that could obscure the relationship between variables 

and delay if not properly accounted for. Moreover, many studies have not controlled for external 

factors unrelated to work zone characteristics, such as weather and temporal variables. Meaning 

that the majority of research has focused on work zone-related variables without considering 

weather conditions or environmental factors. In this study, we aim to address these limitations by 

examining a more comprehensive set of variables, including weather and environmental factors, 

and using a larger dataset to better understand the relationship between explanatory variables and 

work zone delay. 

Data Description 

Data used in this study was collected by ATS Traffic’s Intelitraffik Division (a traffic technology 

company with headquarters in Edmonton, AB). The raw data included approximately 15 million 

travel time observations collected between 2021 and 2022 along the 700 km corridor between 

Alberta borders and Vancouver, British Columbia, Canada. ATS Traffic has 710 planned work 

zones along the corridor as part of the Trans Mountain Expansion Project (TMEP). Out of the 

710 work zones, 624 had already been activated and, thus, have been considered for this 

research. These work zones were located along the same corridor, which included various road 

types. The corridor included Multi-Lane Divided Roadways, Multi-Lane Undivided Roadways 

Two-Lane Roadways, and Low Volume Roadways with no center line. 

Dependent Variable 

Travel time was collected from Google’s probe vehicle data every 2-3 minutes for each active 

work zone. Baseline time is estimated based on a combination of factors including speed limits, 

historical data, actual driving conditions, and the delay related to specific operation zone. In 

addition, SMATS sensors which use Bluetooth and Wi-Fi to capture travel time between pre-set 

locations and vehicles. The dependent variable that was used in the models is the level of delay. 

This variable is derived from delay. First, the delay was computed as the difference between the 

current and baseline estimates of travel time. Then the delay value was classified into one of four 

categories to give an intuition/sense of the level of delay. The first level, “None”, represents 

situations where there was no delay (=0); “Low” represents a delay between 0 to 1 minute; 

“Moderate” represents a delay of 1 to 5 minutes, and “High” represents a delay over 5 minutes. 

Independent Variables 

Weather information was also appended to travel time information to identify if weather 

conditions impacted the level of delay. To do so, one-hour weather data records were gathered 

from 40 Environment Canada weather stations in BC from the Government of Canada 

environment resources (18). Weather data includes hourly Temperature, Precipitation and Wind 

Speed information. This information was linked to the travel time observations based on 

temporal and location data. An automated script was written to perform the execution and data 

collection procedure. It is worth noting that Wind Speed was later dropped from the models due 

to a low impact on delay.  
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Since traffic volume and congestion typically differ among different days and different seasons, 

two variables were defined. The Season variable represented the season during which data was 

collected. Since construction activity is often limited to summer and spring, only two seasons 

existed in the dataset. For the Day of Week variable, three categories were defined 

Monday/Friday = 1 (Week Onset/Offset); Tuesday, Wednesday, and Thursday = 2 (Midweek); 

and Saturday and Sunday = 3 (Weekend). Similar to season and day, traffic congestion also 

varies during different hours of the day. Hour of Day is a categorical variable that is used to 

capture the differences between peak and off-peak hours in a day. From 6 a.m. to 9:30 a.m. and 3 

p.m. to 6:30 p.m. are considered peak hours; off-peak hours are the remainder of the day. 

The speed limit information along the roadways was also considered in the models. Unlike 

operating speed, this is also a variable that work zone operations can control. Speed limit 

information was obtained using OpenStreetMap data for British Columbia [16]. Considering 

traffic volume information is also crucial when modelling the travel time of traffic and delays. 

This information was obtained through the BC Ministry of Transportation and Infrastructure’s 

(BCMoTI’s) Traffic Data Program. As part of this program, BCMoTI installs multiple 

permanent and temporary traffic counters sites at various locations throughout British Columbia 

[17]. This study used 30 counter-sites to estimate the traffic around each work zone asset. A 

script was written to automatically locate traffic count sites that were within proximity of each of 

the 624 work zones. It is worth noting here that some of the traffic counter sites were permanent 

while others were temporary. For temporary traffic count stations, traffic volumes during the 

times when travel time data was collected were not always available. To account for this, the 

hourly traffic volume (HTV) information for those records was estimated using the following 

equation recommended in the Alberta Highway Design Guide [18] for AADT projections. 

𝐻𝑇𝑉′ = 𝐻𝑇𝑉 × (1 + (𝑇𝐺𝑅 × (𝐶𝑌 − 𝑅𝑌)))                      (1) 

Where 𝐻𝑇𝑉′ = Estimated 𝐻𝑇𝑉 during the current year (𝐶𝑌)  

 𝐻𝑇𝑉 = Observed 𝐻𝑇𝑉 during the most recent year where data is available (𝑅𝑌) 

 𝑇𝐺𝑅 = Traffic growth rate (assumed to be 1%)  

𝐶𝑌 = Current year 

𝑅𝑌 = Recent year –– latest year that data is available. 

 

Besides traffic volume, segment length was also considered in the models. This is defined as the 

distance between two points representing the start and end points of the traffic control area for a 

construction site as outlined in the approved traffic control plan. For this project, site access 

points are the places where traffic control is needed. Additionally, based on the road space and 

type of operation (e.g., to enter or exit site access point), traffic might be stopped for brief period 

and released from both ends at the same time; however, for an operation that involves equipment 

loading and offloading, traffic control needs are different. In other words, SLAT could be needed 

with complete stop for traffic when equipment is on move. This information was provided by 

ATS Traffic based on the work zone design drawings and the field layout.  
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Since construction activity for the Trans Mountain Expansion Project (TEMP) was split between 

four different contractors, the corridor was divided into seven different “Operation Zones”, also 

known as “Spreads”. Each operation zone covered a certain length of the corridor and ranged in 

length between 84 and 184km. Multiple work zones exist along the length of each operation 

zone, and Figure 1 shows how different work zones are distributed among them. It is worth 

noting that construction activity and highway conditions varied significantly between different 

operation zones. This included variations in when the work took place, traffic control type, 

proximity to urban centers, traffic volume and composition, and highway type (e.g., two-lane 

two-way or multi-lane). Therefore, it was necessary to control for such a variable in the models. 

After augmenting, cleaning, and refining the dataset, the descriptive statistics of the nearly 2.9 

million data records were estimated, as shown in Table 1.  

 
 (a) (b) 

Figure 1: Work zones grouped by operation zone in TEMP: (a) Work zones in proximity to Kamloops and 

Valemount (b) Work zones in proximity to Abbotsford and Merritt 

Table 1: Descriptive Statistics of Numerical Variables 

  Minimum Maximum Mean Std. Deviation 

Under Construction Time (minute)  0.85 109.03 2.0551 0.7847 

Baseline Time (minute)  1 189.9 1.9735 0.6473 

Delay Time (minute)  0 106.16 0.1390 0.3055 

Segment Length (kilometer)  1 7.92 3.2134 0.9829 

Temperature (centigrade)  -15.4 29.9 8.8433 6.3374 

Precipitation (millimeter)  0 7.7 0.1034 0.4349 

Wind Speed (kilometer per hour)  0 41 7.6730 5.4389 

Traffic Volume (vehicles per hour)  7.5 3926 302.4571 544.9376 

Speed Limit (kilometer per hour)  70 120 101.6713 7.3441 
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Methodology 

The method used in the analysis of the data was Ordinal Logistic Regression. Logistic regression 

makes no assumptions about the distributions of the independent variables, which can be binary, 

continuous, or categorical variables. Moreover, the ordinal nature of the response, in our case, 

the level of delay, also makes it challenging to meet the assumptions of the ordinary linear 

regression. 

Model 

Logistic regression is used to predict the odds of a certain event occurring based on the values of 

several independent variables. Let Yi be a variable that denotes the level of delay observed at a 

particular location during a specific time, where 𝑌𝑖 = 1, 2, 3, 4 representing no delay, low, 

moderate, and high delay, respectively. In this case, P (Y = k) = p, for k =1 to n represents the 

probability of a certain level of delay k being observed at instance i. This probability can be 

represented as log-odds, using a logit model of the following functional form: 

𝑙𝑜𝑔𝑖𝑡 (𝑌 = 𝑘) = ln (
𝑝𝑖

1−(𝑝1+⋯+𝑝𝑛)
) = ln (

𝑝𝑖

𝑝𝑖+1
) , 𝑖 = 1 … 𝑛     (2) 

 

In the case of ordinal logistic regression, the P (Y ≤ k) can be rewritten as: 

P (Y ≤ k) = 𝑝1 + ⋯ + 𝑝𝑛     (3) 

 

The odds of Y can then be expressed as: 

odds (Y≤ k) =  
𝑃(𝑌 ≤ 𝑘)

1− 𝑃(𝑌 ≤ 𝑘)
     (4) 

 

The logit can be expressed as:  

logit (Y≤ k) =  ln (
𝑃(𝑌 ≤ 𝑘)

1− 𝑃(𝑌 ≤ 𝑘)
)     (5) 

 

The cumulative logistic model for ordinal response data is given by: 

logit (Y≤ k) = 𝛼𝑘 + 𝛽𝑘1𝑋1 + ⋯ +  𝛽𝑘𝑛𝑋𝑛, 𝑘 = 1, … . , 𝑛    (6) 

Where 𝛽𝑘𝑚 are regression parameters of the model, and Xm are the covariates representing m 

factors that have alleged effects on the odds ratio of delay. The regression parameters are 

evaluated using an iterative maximum likelihood (ML) procedure. All analysis was done using 

IBM SPSS Statistics version 26. 
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Model Fit  

Unlike linear regression, a well-accepted measure of goodness-of-fit (GOF), such as R2, does not 

exist in logistic regression. Alternatively, the Chi-square method in the Omnibus test was used to 

assess model GOF. The Omnibus test assesses whether including explanatory variables in the 

model improves GOF. This is achieved by computing the difference between the deviance of the 

model before and after the variables are added, as in the following notation: 

𝐺 =   χ2 =  −2𝐿𝐿𝑁𝑢𝑙𝑙 − (−2𝐿𝐿𝑘)        (7) 

Where G is the goodness-of-fit estimate, and -2LL is the deviance estimate for the null model 

and the model with k variable, respectively. 

It is worth noting here that the Hosmer and Leshow (H-L) test cloud also be used to measure the 

difference between prediction with and without the model variables. However, the test has been 

found unreliable, especially when using a large sample size, since the test becomes too sensitive 

[19]. This means that even a small difference between observed and model-predicted values gets 

flagged as significant. 

In addition to the goodness of fit, the Pearson correlation between independent variables was 

checked, and a very low correlation existed (<0.1).  

Results and Discussion  

Table 2 shows a summary of the ordinal logistic regression results. As evident in the table, all 

variables considered in the study had statistically significant effects on the level of delay 

observed at the work zones on the 5% confidence level (i.e. p-value <0.05).  

As expected, increases in traffic volume result in higher levels of congestion and, as a result, are 

associated with an increase in the level of delay. The model also reveals that segment length 

increases are associated with a slight increase in the level of delay. The odd ratio shows that a 

unit increase in segment length (1km) increases the likelihood of delay level increasing by 0.4%. 

The relationship between the speed limit on the roadways and the level of delay is inversely 

proportional. The model shows that a unit increase in the speed limit is associated with a 0.2% 

decrease in the likelihood that delay would increase from one level to the next. Since the speed 

limit often changes in units of 20km/hr, the findings indicate that the likelihood of observing a 

high level of delay drops by around 4% for roads with a speed limit of 100km/hr compared to 

roads where the speed limit is 80km/hr. It is important to note here that changes in the speed 

limit must not be carried out unless a comprehensive safety assessment is conducted. It is also 

worth noting that the speed limit considered here is the speed limit on the highway and not the 

speed limit through the construction zone, which typically drops down to 50km/hr.  

Environmental factors were also found to have statistically significant impacts on the level of 

delay observed at a particular location during a certain time instance. The model shows that 

compared to summer, the likelihood of observing a high level of delay drops during the spring 

season by 36.8%. The Wald estimate (an estimate which measures the size of the impact each 

variable has) is also relatively high for the seasonal variable. One explanation why the summer 

experiences more delays through work zones is the fact that the highways provide access to 

many national parks and campsites. Therefore, more tourist activity is expected during the 

summer months.  
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Table 2: Results of Ordinal Logistic Regression Model 

Variable Level Estimate Std Error Wald df p-value Odd Ratio 

Delay 

Low -0.2982 0.0696 18.363 1.0 <0.0001 0.7422 

Moderate -0.2479 0.0696 12.687 1.0 0.0004 0.7805 

High -8.6365 0.1048 6792.323 1.0 0.0000 0.0002 

Season 
Spring -0.4588  0.0091 2528.1217 1.0 0.0000 0.6320 

Summer 0* . . . . 1.0 

Day Type 

Week 

Onset/Offset 
-0.2172 0.0080 738.7481 1.0 0.0000 0.8047 

Midweek -0.3622 0.0073 2455.5701 1.0 0.0000 0.6961 

Weekend 0* . . . . 1.0 

Hour Type Peak 0.3328 0.3611 2303.6811 1.0 0.0000 1.4148 

 Off-Peak 0* . . . . 1.0 

Operation 

Zone 

Reactivation 
1.7951 0.0079 52101.563

3 
1.0 0.0000 6.0199 

Spread 4B 1.4358 0.0230 3908.3220 1.0 0.0000 4.2030 

Spread 5B 0* . . . . 1.0 

Segment Length 0.0037 0.0003 145.4509 1.0 0.0000 1.0037 

Temperature 0.0126 0.0006 415.5969 1.0 0.0000 1.0126 

Precipitation  -0.3570 0.0075 2292.0313 1.0 0.0000 0.6998 

Traffic Volume  0.0006 <0.0001 1174.5342 1.0 0.0000 1.0006 

Speed Limit  -0.0020 0.0007 8.8212 1.0 0.0030 0.9980 

* Set to zero because this parameter is redundant. 

 

Temperature increases are also associated with a higher likelihood that delay increases. This 

could be attributed to inefficient traffic management in work zones at times when the 

temperature is high. It could also be attributed to a higher volume of travel towards parks at 

times of high temperature. In contrast to temperature, an increase in precipitation is affiliated 

with lower levels of delay. A unit increase in precipitation decreases the likelihood of delay by 

30%. This could be due to the fact that most construction activity is stopped, and no workers are 
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present on-site during times of high precipitation, hence, smoother traffic flow. Although the 

speed limit is lower when it is precipitating, it is still higher when there is activity undergoing in 

work zones. 

The impacts of temporal factors on delay are also intuitive. As expected, peak hours are 

associated with a higher delay level compared to off-peak. The odds ratio shows that the 

likelihood of observing a higher delay is 41.5%. It is worth noting that this was not the case for 

work zones where construction activity took place overnight; hence, the need to include a 

variable in the model that controls for operation zone (i.e., the difference between work zone that 

operates in different conditions under different contractors).  

Compared to weekends, both midweek and week onset and offset are affiliated with a lower level 

of delay through work zones. The odds ratio shows that the likelihood of high delay drops by 

30.4% for midweek. Similarly, for week onset and offset (i.e., Monday and Friday), the level of 

delay is expected to drop by 19.5%. These results indicate that delay through work zones 

increases due to intra-city travel, which increases on weekends when compared to other days of 

the week.  

The results of this study provide insights on how traffic could be managed in work zones and 

how a lower delay could be achieved along corridors of similar characteristics. The findings 

reveal that lower delay at work zones could be achieved by (1) reducing work zone activities 

during weekends, (2) increasing activities during off-peak hours, and (3) considering more 

effective and productive traffic and work zone management strategies during hot summer months 

when the traffic volume is higher than other seasons.  

Conclusions, Discussion, and Future Research 

Identifying the factors that impact travel time through a work zone is a prerequisite to efficient 

work zone traffic management. This paper develops an ordinal logistic regression model using a 

big dataset collected along 624 work zones in British Columbia and Alberta. The model revealed 

meaningful relationships between several variables and work zone delays. This includes an 

increase in work zone segment length being linked to a slight rise in delay. Additionally, 

according to the model, the probability of noticing a significant delay during the spring decreases 

by 36.8% compared to the summer. Increases in temperature are also found to be affiliated with 

delay increases. As anticipated, peak hours are correlated with a higher delay when compared to 

off-peak. The results also showed that delay at work zones increases on weekends compared to 

other days of the week. This is an extremely interesting finding since increases in delay occur 

during weekends despite the contractors working on limiting activity during that period.  

This research has several practical applications and could be usefully explored in further 

research. Firstly, the findings of this paper could be used to effectively manage traffic flow 

through a work zone. For instance, prioritizing off-peak hours and cooler temperatures for work 

zone operations. Secondly, the dataset used in this study consists of 2.9 million observations 

making it possible to run deep learning models to accurately predict travel time and delays. 

Machine learning algorithms demonstrated high accuracy in variable prediction and pattern 

recognition. Thirdly, the findings could also be used to build a robust model to predict work zone 

travel time at locations where construction activity is planned. In fact, the authors are currently 

working on building a deep learning model to predict travel time observations at work zones 

based on this study’s findings. Another valuable application is to calculate the contractor penalty 
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for cost overruns. In addition, the model can assist work zone designers and schedulers in 

determining the ideal start and end timings for work zones. In the case studied, it would be 

interesting to use the model to help transportation engineers better create and assess traffic 

mitigation and management plans by analyzing the performance of work zones. Although the 

findings of this paper are essential for the mentioned applications, the work could be improved 

by considering more work zone-related variables in the models, such as work zone 

configurations and traffic control strategy. Unfortunately, such information was not available to 

the authors at the time of the study.  
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