
1 

 

 

 
 

Modelling GTHA Post-Secondary School Location Choice 
 
 
 
 
 
 

Ethan Baron 
Undergraduate Student 

Division of Engineering Science 
University of Toronto 

 
Gonzalo Martinez Santos 
Undergraduate Student 

Division of Engineering Science 
University of Toronto 

 
Eric J. Miller, Ph.D. 

Professor, Department of Civil & Mineral Engineering 
Director, University of Toronto Transportation Research Institute 

University of Toronto 
 
 
 
 
 
 
 

Prepared for presentation in the Transportation Systems Modelling Session 
 
 
 

2021 Transportation Association of Canada Conference & Exhibition 
  



2 

 

1 Introduction 

The purpose of this paper is to develop a school location choice model for post-secondary (PS) students 
in the Greater Toronto-Hamilton Area (GTHA). This analysis differs from previous PS school choice 
modelling in three respects. Firstly, the model is not representing the college choice process directly. 
Instead, this analysis is an exercise in matching students who have already made PS school choice 
decisions to their selected institutions. While there are many areas of overlap, an important difference is 
that household information reflects where students reside after having selected a college, and possibly, 
moving out from their parental homes. Secondly, this study primarily analyzes geographical patterns in 
school location choice for applications in travel demand modelling. An emphasis is placed on modelling 
the accessibility of each school location to each student, rather than predicting school selectivity or 
institution type. Thirdly, an RF classifier is implemented for the location choice problem, a novel 
approach in the field, and its utility is compared to that of the classic econometric approaches. 

Section 2 presents a brief literature review of relevant works in PS school location choice modelling in 
general, and in the GTHA specifically. Section 3 introduces the two modelling methods used in this 
study: random utility models and random forest models. Section 4 describes the two datasets used: the 
2015 and 2019 StudentMoveTO (SMTO) surveys. Section 5 presents a logit mode choice model for the 
2015 dataset, and Section 6 then presents the development of a school location choice for this dataset. 
Section 7 presents the development of a random forest model for the school location choice problem 
and Section 8 summarizes and discusses the main results for the 2015 modelling. Building on the 2015 
analysis, Section 9 describes the development of location choice models for the 2019 dataset, and 
section 10 summarizing the key findings from this analysis. Finally, Section 11 concludes the paper with 
a brief discussion of possible directions for future work. 

2 Literature Review 

This section presents a brief review of the PS school choice literature (Section 2.1) and previous work on 
this problem in the GTHA (Section 2.2). With the exception of the GTHA-based work, it appears that PS 
school choice has not been well-studied in Canada, with the vast majority of the research to date 
occurring in the U.S. 

2.1 Post-Secondary (PS) School Choice Modelling 

From a conceptual point of view, frameworks for the PS school choice model have been presented by 
Perna (2006) and Acevedo-Gil (2017). In empirical practice, the most common approach to model this 
choice is using a multinomial logit model (MNL), or variants thereof. However, other techniques can be 
used, such as a regression analysis as implemented by Hearn (1984). In this study, higher test scores, 
educational aspirations, parental income and academic achievement were found to be most correlated 
with higher selectivity, while belonging to certain ethnic and gender groups had negative effects on 
college selectivity. These results confirm previous findings of what Hearn calls “nonmeritocratic 
tendencies” in the American college choice system. 

Such “nonmeritocratic tendencies” are observed in other studies as well. Specifically, Niu et al. (2006) 
find, in an analysis of college choices of Texas students, that Black and Hispanic students are less likely to 
enrol in more selective institutions (except for the most selective group), while the opposite pattern 
applies to Asian students. On the other hand, Montgomery (2002) uses a nested logit (NL) model to 
analyze choice of graduate business school and enrollment status (full-time or part-time) in the United 
States and finds that minorities and males are more responsive to school reputation, exhibiting a 
stronger preference for higher-reputation institutions. It is unclear to what extent such tendencies exist 
in the GTHA. 

https://link-springer-com.myaccess.library.utoronto.ca/content/pdf/10.1007%2F1-4020-4512-3.pdf
https://journals-scholarsportal-info.myaccess.library.utoronto.ca/details/13613324/v20i0006/829_ctaiccffls.xml
https://www-jstor-org.myaccess.library.utoronto.ca/stable/pdf/2112465.pdf
https://journals-scholarsportal-info.myaccess.library.utoronto.ca/pdf/02727757/v25i0003/259_csattt1l.xml#page=14&zoom=100,0,0
https://journals-scholarsportal-info.myaccess.library.utoronto.ca/pdf/02727757/v21i0005/471_anlmotcoagbs.xml
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Another common observation found by Montgomery (2002) is that greater distance from home reduces 
the attractiveness of an institution. Kohn et al. (1974) make this observation after implementing 
conditional logit models for PS school choice in Illinois and North Carolina. Oosterbeek et al. (1992) also 
notice this pattern when using an MNL model to analyze data on university choices of Dutch economists. 
Long (2004) uses a conditional logit model to analyze changes in PS school decisions over time and finds 
that distance from home negatively impacts the probability of attending a school. Interestingly, they 
note that this effect has decreased over time.  

Finally, many studies show relationships between certain campus attributes and their perceived utilities. 
For instance, higher tuition fees are normally connected with lower utilities. Kohn et al. (1974) find that 
the disutility due to greater tuition fees is smaller for higher-income groups in particular. Long (2004) 
finds that students in 1992 consider institution quality and selectivity to be a more important factor than 
students in 1972 and 1982, and that higher tuition reduces college’s perceived utilities. Sá et al. (2012) 
use an NL model to predict living arrangement and university choice for Dutch post-secondary students, 
while Niu and Tienda (2007) analyze PS school choice in Texas, and specifically investigate the effects of 
constraining choice sets in different ways. In both studies, institutional attributes such as quality and 
selectivity are used to model the base utility of each school. 

2.2 PS School Location Choice in the GTHA 

StudentMoveTO (n.d.) publishes a list of works which make use of the survey data. Many of these works 
analyze students’ commute patterns, including mode choice, and bike or license ownership. Chung et al. 
(2018) analyze living arrangement decisions for students at the University of Toronto. However, no 
published works as of yet have developed a school location choice model based on the StudentMoveTO 
(SMTO) data. 

Past researchers from the University of Toronto’s Travel Modelling Group have investigated school 
location choice models for the GTHA. Chen (2018) estimates a doubly-constrained gravity model using 
data from the 2016 Transportation Tomorrow Survey (TTS). While this model was effective for students 
at the elementary and secondary levels, it was found to be ineffective for the post-secondary level. 
Wang (2015) estimates another doubly-constrained gravity model with an accessibility model for the 
utility term using data from the 2011 TTS. Likewise, this model was found to be ineffective for both full-
time and part-time post-secondary students. Both these findings provide motivation for a more 
advanced post-secondary school location choice model to be developed. 

3 Methods 

3.1 Random Utility Models 

As indicated in the literature review, the multinomial logit model (MNL) is the most common method 
used to model PS choice. The model is derived within a random utility framework introduced by 
McFadden (1973), and described in depth by Train (2003). The perceived utility of alternative 𝑗 for 
student 𝑖 is assumed to be 𝑈𝑖𝑗 = 𝑉𝑖𝑗 + 𝜖𝑖𝑗, where 𝑉𝑖𝑗 is the systematic utility of location j for student i 

and 𝜖𝑖𝑗 is an associated random utility. A student selects alternative 𝑘 if and only if 𝑈𝑖𝑘 > 𝑈𝑖𝑗  ∀𝑗 ≠ 𝑘. 

The MNL is obtained by assuming that the random utility terms are independent and identically 
distributed with a Type-1 extreme value distribution. In this formulation, the probability of alternative 𝑘 
being chosen by individual 𝑖 from choice set 𝐶 is: 

𝑃(𝑦𝑖 = 𝑘) =
𝑒𝑉𝑖𝑘

∑ 𝑒
𝑉𝑖𝑗

𝑗∈𝐶

   [1] 

One property of MNL models is that it is consistent with the Independence from Irrelevant Alternatives 
(IIA) assumption. Namely, this is the property that the probability of alternative 𝑗 being selected over 

https://journals-scholarsportal-info.myaccess.library.utoronto.ca/pdf/02727757/v21i0005/471_anlmotcoagbs.xml
https://www.rand.org/content/dam/rand/pubs/reports/2006/R1470.pdf
https://www.researchgate.net/publication/226885736_An_empirical_analysis_of_university_choice_and_earnings
https://journals-scholarsportal-info.myaccess.library.utoronto.ca/pdf/03044076/v121i1-2/271_hhcdcootclcm.xml
https://www.rand.org/content/dam/rand/pubs/reports/2006/R1470.pdf
https://journals-scholarsportal-info.myaccess.library.utoronto.ca/pdf/03044076/v121i1-2/271_hhcdcootclcm.xml
https://journals-scholarsportal-info.myaccess.library.utoronto.ca/details/00343404/v46i0005/651_laaucodps.xml
https://journals-scholarsportal-info.myaccess.library.utoronto.ca/pdf/0049089x/v37i0002/416_cciamcs.xml
https://tmg.utoronto.ca/doc/1.4/gtamodel/index.html
http://www.transportationtomorrow.on.ca/
https://eml.berkeley.edu/reprints/mcfadden/zarembka.pdf
https://eml.berkeley.edu/books/choice2.html
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alternative 𝑘 is independent of the other alternatives in the choice set. When this assumption does not 
hold, an extension of the MNL model, known as the nested logit (NL) model, can be used (Ben-Akiva and 
Bierlaire 1999). In this model, each alternative is placed into one nest, and it is assumed that the error 
terms in the utilities for the alternatives within each nest are correlated. The probability of alternative 𝑘 
from nest 𝑙 including alternatives 𝐶𝑙 being chosen by individual 𝑖 from the set of nests 𝑀 is: 

𝑃(𝑦𝑖 = 𝑘) =
𝑒𝜇𝑉𝑖𝑚

∑ 𝑒𝜇𝑉𝑖𝑚𝑚∈𝑀
×

𝑒𝜇𝑙𝑉𝑖𝑘

∑ 𝑒
𝜇𝑙𝑉𝑖𝑗

𝑗∈𝐶𝑙

  [2] 

Here, 𝜇 is the scale parameter reflecting the correlation between the random components of the utility 
of the nests (at the top level of the model) and 𝜇𝑙  reflects the correlation among alternatives in nest 𝑙 (at 

the lower level of the model). The term ln ∑ 𝑒𝜇𝑙𝑉𝑖𝑗
𝑗∈𝐶𝑙

 is known as the logsum or inclusive value of nest 

𝑙, and represents the expected maximum utility for the choice of alternatives in the nest. In order for 
this formulation to be consistent with the random utility maximization framework, 𝜇𝑙 ≥ 1 ∀𝑙 ∈ 𝑀. Note 
that if all 𝜇𝑙 = 1 then the nesting structure is degenerate and the model collapses into the standard 
MNL. 
 
In this study, logit and nested logit models are estimated using mlogit 1.1-0 (Croissant 2020) with 
RStudio 1.3.959 and R 4.0.0. In some cases. Biogeme 3.2.6 (Bierlaire 2020) was used with Python 3.7.6 
and Jupyter Notebook 6.0.3. 
 

3.2 Random Forest Models 

Random forests (RFs) are a machine learning technique that have been successfully applied in various 
fields, including genetics, clinical medicine, and bioinformatics (Strobl et al. 2009). Developed by 
Breiman (2001), the RF training algorithm is as follows (Hastie et al. 2009). For 𝑏 ∈ {1, 2, … 𝐵}: 

a) Draw a bootstrapped sample from the training data. 

b) Grow a decision tree 𝑇𝑏 using the bootstrapped data by performing the following steps 

recursively until minimum node size 𝑛𝑚𝑖𝑛 is reached: 

a. Select 𝑚 features from the training data at random 

b. Select the best feature and split-point from the 𝑚 features according to some split 

criterion 

c. Split the node using that feature and split-point 

The RF is the set of trees {𝑇𝑏}1
𝐵. The prediction for a given input is the majority vote for the predicted 

output from all trees. Several hyperparameters can be adjusted in this algorithm. They include: 

• 𝐵, the number of trees 

• 𝑛𝑚𝑖𝑛, the minimum size for leaf nodes 

• 𝑚, the number of features to consider for each split point 

• The splitting criteria to be used 

• The maximum tree depth 

The RF algorithm is implemented using scikit-learn 0.22.1 with Python 3.7.6 and Jupyter Notebook 6.0.3. 
 

3.3 Metrics Reported 

Table 1 lists the metrics used throughout this paper to evaluate the models being tested. A few notes: 

• The softmax accuracy is generally prioritized over the hardmax accuracy since it reflects the 

probabilities assigned to correct observations and is less sensitive to the imbalances in the data 

(e.g., a “reasonable” hardmax accuracy can be reached by predicting the largest campus for all 

students). 

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.8438&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.8438&rep=rep1&type=pdf
https://cran.r-project.org/web/packages/mlogit/mlogit.pdf
https://transp-or.epfl.ch/documents/technicalReports/Bier20.pdf
https://psycnet.apa.org/record/2009-22665-002
https://link.springer.com/chapter/10.1007%2F978-0-387-84858-7_15
https://scikit-learn.org/stable/index.html
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• The log likelihood can only be reported if no actual observations are assigned a probability of 0 

(as this would yield a log likelihood of negative infinity). 

• The McFadden rho-squared can only be reported where alternative-specific coefficients are 

used, and hence is not used throughout much of this analysis. 

Table 1: Summary of Reported Metrics. Note that 𝐿0 is the log-likelihood for the logit model with only 
alternative-specific constants, as explained in McFadden (1975). 𝑝𝑖𝑗  represents the probability assigned 

by the model that student 𝑖 attends campus 𝑗, and 𝑦𝑖  represents the campus actually attended by 
student 𝑖. 

Metric Calculation 

Hardmax Accuracy 𝐻𝐴 =  ∑ ((argmax
𝑗

𝑝𝑖𝑗) == 𝑦𝑖)

𝑛

𝑖=1

 

Softmax Accuracy 𝑆𝐴 =
1

𝑛
∑ 𝑝𝑖

𝑛

𝑖=1

 

Log Likelihood log(𝐿) = log (∏ 𝑝𝑖

𝑛

𝑖=1

) = ∑ log (𝑝𝑖)

𝑛

𝑖=1

 

McFadden Pseudo Rho-Squared 𝜌2 = 1 −
log(𝐿)

log(𝐿0)
 

4 Data 

4.1 2015 SMTO 

The 2015 SMTO dataset is the primary one used to develop a proposed school location choice model. 
Seven campuses are included in the survey: three University of Toronto campuses (St. George - SG, 
Scarborough - SC, and Mississauga - MI), two York University campuses (Keele - YK, and Glendon - YG), 
Ryerson University - RY, and OCAD University - OC. Observations whose indicated enrollment level was 
“Other” (as opposed to “UG” or “Grad”) were removed from the sample; these were also the only 
observations whose enrollment status was indicated as “Other” (as opposed to “FT” or “PT”). Table 2 
tabulates important characteristics of this filtered dataset. 

Note that to make the model generalizable to TTS data, only TTS-compatible attributes are used in the 
analysis. The one exception is living arrangement, which is not available in TTS but is used regardless. A 
gradient-boosting machine to classify student living arrangement given other attributes has been 
trained for possible use to impute this attribute for TTS records. The model achieves an accuracy of over 
90%, and so living arrangement is retained in the list of available attributes.  

4.2 2019 SMTO 

Table 3 presents the summary statistics for the 2019 SMTO data (Mitra et al., 2019), which includes data 
from 27 university and college campuses (including those from the 2015 survey). 

4.3 2016 TTS 

The Transportation Tomorrow Survey (TTS) is a travel survey conducted once every five years in the 
GTHA. The survey includes personal attributes such as age, household attributes such as composition 
and income class, and for students, commute information including time and mode taken.  

https://eml.berkeley.edu/~mcfadden/travel/ch5.pdf
http://www.transportationtomorrow.on.ca/
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Table 2: Tabulation of Key Variables in 2015 SMTO Dataset. Family: whether the student’s indicated 
living arrangement is “Live with family/parents”. Income: Low is < $60,000. Mode: Active is walk/bicycle. 

  MI OC RY SC SG YG YK Total Share 

Count Total 930 455 2708 1074 5912 315 3084 14478 100.0% 

Level UG 858 403 2420 1018 3571 298 2464 11032 76.2% 

 Grad 72 52 288 56 2341 17 620 3446 23.8% 

Status FT 893 408 2557 1028 5425 295 2840 13446 92.9% 

 PT 37 47 151 46 487 20 244 1032 7.1% 

Gender Female 653 337 1739 745 3860 256 2078 9668 66.8% 

 Male 268 105 953 323 2007 56 972 4684 32.4% 

 Other 9 13 16 6 45 3 34 126 0.9% 

Family True 666 230 1861 791 2452 205 2014 8219 56.8% 

 False 264 225 847 283 3460 110 1070 6259 43.2% 

Income High 139 56 515 159 1000 57 523 2449 16.9% 

 Low 172 102 601 240 1425 74 767 3381 23.4% 

 Unknown 619 297 1592 675 3487 184 1794 8648 59.7% 

Commute 
Mode 

Transit 566 302 2086 697 3139 217 2232 9239 63.8% 
Active 94 138 508 153 2511 41 360 3805 26.3% 
Auto 227 13 105 222 218 52 477 1314 9.1% 
Other 43 2 9 2 44 5 15 120 0.8% 

Distance Mean 15.10 15.16 18.61 13.92 11.25 16.97 17.42 14.63  

 Std. Dev 12.95 15.23 14.12 11.65 12.89 12.62 12.06 13.31  
 
Table 3: Tabulation of Key Variables in 2019 SMTO Dataset. Family: whether the student’s indicated 
living arrangement is “Live with family/parents”. Income: Low is < $60,000. Mode: Active is walk/bicycle. 

  Uni - UG Uni - Grad College Total Share 

Count Total 10396 2652 3468 16516 100.0% 

Status FT 10002 2434 3322 15758 95.4% 

 PT 394 218 146 758 4.6% 

Family True 4417 558 1081 6056 36.7% 

 False 2546 1386 1017 4949 30.0% 

 Unknown 3433 708 1370 5511 33.4% 

Work FT 636 421 240 1297 7.9% 

 PT 4739 1148 1817 7704 46.6% 

 None 5021 1083 1411 7515 45.5% 

Income High 1429 257 156 1842 11.2% 

 Low 2527 358 787 3672 22.2% 

 Unknown 6440 2037 2525 11002 66.6% 

Commute Mode Transit 4366 1071 1150 6587 39.9% 

 Active 1466 638 282 2386 14.4% 

 Auto 794 188 551 1533 9.3% 

 Other 42 17 13 72 0.4% 

 Unknown 3728 738 1472 5938 36.0% 

Age Mean 20.93 27.96 24.60 22.83  

 Std. Dev. 4.87 7.13 7.95 6.59  
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5 2015 SMTO Mode Choice – Logit Model 

A key component of the school location choice model was expected to be a measure of the accessibility 
of each school to the student. For this reason, a mode choice model is developed and estimated. 

5.1 Model Development 

The mode choice model estimated takes the form of an MNL model with three alternatives: Auto, 
Transit, and Active Mode (walking or biking). The 120 students in the data whose indicated mode choice 
is not one of these three alternatives are removed from the mode choice estimation set. The model 
includes estimated morning travel times from the student’s home zone to each campus for each mode 
and alternative-specific constants, with transit as the reference mode, to reproduce aggregate mode 
shares. 

In developing the mode choice model, the interaction between various socioeconomic variables and the 
alternative-specific constants is tested. These socioeconomic variables include both individual and 
household characteristics. The variables whose impact is most significant are found to be living 
arrangement – specifically, whether the student indicated that they are living with their family/parents – 
and driver’s license ownership. 

To further refine the mode choice model, choice set restrictions for certain alternatives in certain choice 
situations are examined. Two types of availability restrictions are considered: for active modes and auto. 
The active mode alternative is made unavailable in cases where the estimated walking travel time in 
minutes is greater than some threshold 𝑡, where 𝑡 ∈ [0, 300] is tested. The auto mode is made available 
only if a student has indicated that their household owns at least 𝑛 vehicles, where 𝑛 ∈ {0, 1, 2} is 
tested. 

Note that some observations may contradict assumptions about mode availability (e.g. students 
indicating they drive to campus despite not owning a car). Such “invalid” observations have probability 
zero in the availability-restricted models, resulting in a log likelihood of negative infinity. For this reason, 
log likelihood is not used to compare availability-restricted models. Instead, the “softmax accuracy” is 
used. The setting which optimized softmax accuracy were 𝑡 = 46.6 minutes and 𝑛 = 2 cars. 

5.2 Results 

The proposed mode choice model uses the following utility function for student 𝑖 and mode 𝑗: 

𝑉𝑖𝑗 = Β𝑗 + Β𝑡𝑗
𝑡𝑖𝑗 + Β𝐹𝑗

𝐹𝑖 + Β𝐿𝑗
𝐿𝑖  [4] 

where   𝑡𝑖𝑗 = the estimated morning travel time from student 𝑖’s home zone to campus 𝑗, in minutes; 

𝐹𝑖 = 1 if student 𝑖 lives with family/parents, 0 otherwise; and 

𝐿𝑖 = 1 if student 𝑖 owns a driver’s license, 0 otherwise. 

Active modes were set as unavailable where 𝑡𝑖,𝐴𝑐𝑡𝑖𝑣𝑒 > 46.6, and auto was set as unavailable where the 

number of cars owned by the student’s household was less than two. Table 4 presents the results for 
this proposed model, while Tables 5 and 6 show confusion matrices for this model. 
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Table 4: Proposed Mode Choice Model. 𝐵𝑇𝑟𝑎𝑛𝑠𝑖𝑡 = 0. Active mode travel times are calculated given 
speeds of 4km/h. All travel times are in minutes. *** indicates p < 0.001. McFadden R^2 and Log 
likelihood not reported since availability restrictions result in probabilities of 0 assigned to observed 
choices in some cases. 

Parameter Estimate Std. Error  
 Β𝐴𝑐𝑡𝑖𝑣𝑒 3.890 0.169 *** 

 Β𝐴𝑢𝑡𝑜 -1.696 0.169 *** 
 Β𝐹𝐴𝑐𝑡𝑖𝑣𝑒

 -0.992 0.147 *** 
 Β𝐹𝐴𝑢𝑡𝑜

 -0.792 0.121 *** 
 Β𝐿𝐴𝑐𝑡𝑖𝑣𝑒

 0.613 0.113 *** 
 Β𝐿𝐴𝑢𝑡𝑜

 1.622 0.117 *** 
 Β𝑡𝑇𝑟𝑎𝑛𝑠𝑖𝑡

 -0.0113 0.001 *** 
 Β𝑡𝐴𝑐𝑡𝑖𝑣𝑒

 -0.0936 0.006 *** 
 Β𝑡𝐴𝑢𝑡𝑜

 -0.0378 0.003 *** 

Metric Result Metric Result 

Hardmax Accuracy 0.837 McFadden R^2 N/A 

Softmax Accuracy 0.792 Log likelihood N/A 

 
Table 5: Hardmax Confusion Matrix from Proposed Mode Choice Model 

Obs\Pred Active Auto Transit Observed Accuracy 

Active 3116 13 676 3805 81.9% 

Auto 41 81 1191 1313 6.2% 

Transit 360 66 8813 9239 95.4% 

Predicted 3517 160 10680 14357 83.7% 

 
Table 6: Softmax Confusion Matrix from Proposed Mode Choice Model 

Obs\Pred Active Auto Transit Observed Accuracy 

Active 2827.7 32.7 944.6 3805 74.3% 

Auto 36.2 269.0 1007.8 1313 20.5% 

Transit 304.2 662.5 8272.4 9239 89.5% 

Predicted 3168.1 964.1 10224.8 14357 79.2% 

 

5.3 Discussion 

As can be seen, the accuracy of the mode choice model is quite good. For reference, a model with only 
alternative-specific constants would result in a hardmax accuracy of 62.7% (the market share of Transit) 
and softmax accuracy of 46.6% (the sum of the squares of the market shares). As expected, students 
living with their family and/or owning a driver’s license are more likely to drive to school, and less likely 
to use an active mode compared to students in other living arrangements. 

6 SMTO 2015 Location Choice – Logit Model 

This section describes the development of a logit-based PS location choice model estimated using 2015 
SMTO data. The model is iteratively developed, beginning with a simple specification adding additional 
complexity incrementally. 
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6.1 Model Development 

At first, a doubly-constrained gravity model is estimated. Anas (1983) shows that the doubly-constrained 

gravity model is equivalent to MNL with impedance function 𝑓(𝑑𝑖𝑗) = 𝑒Β𝑑𝑑𝑖𝑗. In this study, 𝑑𝑖𝑗  is the 

network distance between the student 𝑖’s home zone and campus 𝑗, obtained from level-of-service 
matrices generated using the 2016 TTS data and GTAModel V4.1. This model is compared to an 
accessibility model which includes the expected maximum utility from the mode choice model as a 
logsum term, as outlined by Ben-Akiva and Lerman (1985). As such, this accessibility model uses the 
following utility model: 

𝑉𝑖𝑗 = Β𝑗 + Β𝐴𝑐𝑐𝑒𝑠𝑠 ∗ log (𝑒
𝑉𝑖𝑗𝐴𝑐𝑡𝑖𝑣𝑒 + 𝑒

𝑉𝑖𝑗𝐴𝑢𝑡𝑜 + 𝑒
𝑉𝑖𝑗𝑇𝑟𝑎𝑛𝑠𝑖𝑡) 

Models including both the distance term and the mode choice logsum are also tested. 

One objective for this analysis is to make the model generalizable to expanded choice sets, which 
requires avoiding alternative-specific constants.  Instead, campus-specific attributes are used to model 
the alternative-specific utility for each campus. These attributes include total enrollment, average first-
year domestic tuition for the Arts and Science program, proportion of domestic enrollment in 
undergraduate programs, and secondary school admission averages. These values were obtained from 
2015-16 data from Common University Data Ontario (CUDO) and are summarized in Table 7. 
 

Table 7: Summary of Campus Attributes 

School 
Code 

Tuition 
(CAD) 

Domestic 
Enrollment 

Admission 
Average 

Total 
Enrollment 

SG 7519 80.8% 89.3% 53930 

SC 7813 83.8% 84.1% 11770 

MI 7670 82.8% 83.0% 13298 

YK 7339 89.2% 81.7% 41142 

YG 7339 89.2% 81.7% 2457 

RY 7026 96.7% 84.0% 28159 

OC 7052 90.0% 82.4% 3491 

 
Next, the addition of socioeconomic variables to the model was investigated. In particular, the 
interactions of socioeconomic variables with distance, accessibility, and campus-specific attributes are 
explored. 

The final addition to the model is including “closest school dummies” 𝐶𝑖𝑗, representing which school is 

closest to the student’s home zone. That is, 𝐶𝑖𝑗 = {1 if 𝑑𝑖𝑗 ≤ 𝑑𝑖𝑘  ∀ 𝑘 ≠ 𝑗, else 0}. Moreover, it is 

hypothesized that the closest school dummies are most meaningful for schools within a certain distance 
of the student’s home zone. Upon experimenting with this maximum distance, a threshold of 2km is 
chosen, such that 𝐶𝑖𝑗 = {1 if 𝑑𝑖𝑗 ≤ 2km and 𝑑𝑖𝑗 ≤ 𝑑𝑖𝑘  ∀ 𝑘 ≠ 𝑗, else 0}.  

6.2 Results 

Table 8 presents the results for the three fully-developed models which were estimated: a distance-
based model, an accessibility-based model (with the mode choice utility as a logsum term), and a 
combined model with both of these terms. 

https://reader.elsevier.com/reader/sd/pii/0191261583900231?token=48ECD9B1BF07383098D0C6195509A9982E0B5E7E379C4F5DEF339D8C67C0F7AC22BBDA76A819AFED5A35FDE34934863E
https://search-proquest-com.myaccess.library.utoronto.ca/docview/1309215151?pq-origsite=summon
https://cudo.ouac.on.ca/
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Table 8: Closest Dummies in Location Choice Models. *** indicates p < 0.001. 𝐹𝑖 = 1 if the student lives 
with their family/parents, otherwise 𝐹𝑖 = 0. 𝑊𝑖 = 1 if the student works full-time, otherwise 𝑊𝑖 = 0. 
𝑃𝑖 = 1 if the student’s enrollment status is part-time, otherwise 𝑃𝑖 = 0. 

 Distance Accessibility Combined 

Parameter Estimate Std. Error  Estimate Std. Error  Estimate Std. Error  

 Β𝐷𝑖𝑠𝑡 -0.1043 0.002 ***    -0.0832 0.003 *** 

 Β𝐴𝑐𝑐𝑒𝑠𝑠    0.8663 0.018 *** 0.2671 0.028 *** 

 Β𝐶𝑙𝑜𝑠𝑒𝑠𝑡 0.9287 0.042 *** -0.2310 0.053 *** 0.5444 0.060 *** 
 Β𝐿𝑜𝑔(𝐸𝑛𝑟𝑜𝑙) 0.8011 0.014 *** 0.8660 0.015 *** 0.8058 0.015 *** 

 Β𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐴𝑣𝑒 0.0599 0.004 *** 0.0261 0.004 *** 0.0539 0.004 *** 

 𝐹𝑖 ∗ Β𝐷𝑜𝑚𝑒𝑠𝑡𝑖𝑐 % 0.0331 0.002 *** 0.0223 0.002 *** 0.0315 0.002 *** 
 𝐹𝑖 ∗ Β𝐷𝑖𝑠𝑡_𝐹𝑎𝑚𝑖𝑙𝑦 0.0414 0.003 ***    0.0214 0.004 *** 

𝐹𝑖 ∗ Β𝐴𝑐𝑐𝑒𝑠𝑠_𝐹𝑎𝑚𝑖𝑙𝑦       -0.2185 0.043 *** 

 𝑊𝑖 ∗ Β𝐴𝑐𝑐𝑒𝑠𝑠_𝑊𝑜𝑟𝑘       -0.4222 0.098 *** 

 𝑃𝑖 ∗ Β𝐴𝑐𝑐𝑒𝑠𝑠_𝑃𝑇       -0.2142 0.052 *** 

Metric          

Hardmax Accuracy 0.4646   0.4537   0.4734   

Softmax Accuracy 0.3540   0.3414   0.3565   

Log Likelihood -19154   -19831   -19091   

 

It is seen that the distance model performs almost as well as the combined model, despite including 
much fewer variables (recall that the accessibility term includes a non-trivial mode choice model). 
Furthermore, the accessibility model performs quite poorly relative to the other models. Due to this 
effectiveness and the relative simplicity of the distance model, this model is selected as the preferred 
one. 

Thus, the proposed logit model for 2015 SMTO PS location choice is based on the utility model: 

 𝑉𝑖𝑗 = Β𝐸𝑛𝑟𝑜𝑙 ∗ log(𝐸𝑗) + Β𝐴𝑑𝑚𝐴𝑣𝑒 ∗ 𝐴𝐴𝑗 + Β𝐷𝑜𝑚% ∗ 𝐷𝑗 ∗ 𝐹𝑖   

                                                      + 𝑑𝑖𝑗 ∗ Β𝐷𝑖𝑠𝑡 + Β𝐷𝑖𝑠𝑡_𝐹𝑎𝑚𝑖𝑙𝑦 ∗ 𝐹𝑖 ∗ 𝑑𝑖𝑗 + Β𝐶𝑙𝑜𝑠𝑒𝑠𝑡 ∗ 𝐶𝑖𝑗  [6] 

where: 
𝑉𝑖𝑗 is the systematic utility for student 𝑖 and campus 𝑗, 

𝐸𝑗  is the total enrollment of campus 𝑗, 

𝐴𝐴𝑗 is the mean secondary school admission average for campus 𝑗, 

𝐷𝑗 is the domestic enrollment rate for undergraduate programs at campus 𝑗, 

𝐹𝑖 = {1 if student 𝑖 lives with their family/parents, 0 otherwise}, 
𝑑𝑖𝑗  is the network distance between student 𝑖’s home zone and campus 𝑗, 

𝐶𝑖𝑗 = {1 if 𝑑𝑖𝑗 ≤ 2km and 𝑑𝑖𝑗 ≤ 𝑑𝑖𝑘  ∀𝑘 ≠ 𝑗 , 0 otherwise}, and 

Β𝐸𝑛𝑟𝑜𝑙, Β𝐴𝑑𝑚𝐴𝑣𝑒, Β𝐷𝑜𝑚%, Β𝐷𝑖𝑠𝑡, Β𝐷𝑖𝑠𝑡_𝐹𝑎𝑚𝑖𝑙𝑦, and ΒClosest are estimated parameters. 

Confusion matrices for this model are presented in Tables 9 and 10. 
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Table 9: Hardmax Confusion Matrix for Proposed Logit Location Choice Model 

Obs\Pred MI OC RY SC SG YG YK Observed Accuracy 

MI 404 0 8 0 339 0 179 930 43.4% 

OC 27 0 53 6 273 0 96 455 0.0% 

RY 194 0 318 36 1431 0 729 2708 11.7% 

SC 6 0 18 184 639 0 227 1074 17.1% 

SG 239 0 529 53 4256 0 834 5911 72.0% 

YG 13 0 8 3 203 0 88 315 0.0% 

YK 172 0 54 30 1264 0 1564 3084 50.7% 

Predicted 1055 0 988 312 8405 0 3717 14477 46.5% 

 
Table 10: Softmax Confusion Matrix for Proposed Logit Location Choice Model 

Obs\Pred MI OC RY SC SG YG YK Observed Accuracy 

MI 271.3 26.3 166.1 19.9 277.5 11.9 157.1 930 29.2% 

OC 23.2 19.5 116.1 24.2 190.1 8.7 73.2 455 4.3% 

RY 166.9 90.9 687.8 173.4 997.2 58.2 533.7 2708 25.4% 

SC 18.3 29.5 224.7 247.6 329.0 31.9 192.9 1074 23.1% 

SG 227.6 227.1 1375.2 250.4 2897.5 102.2 831.0 5911 49.0% 

YG 15.4 9.7 71.0 22.1 114.7 10.7 71.4 315 3.4% 

YK 176.4 86.8 595.3 169.3 1000.0 66.6 989.7 3084 32.1% 

Predicted 899.0 489.8 3236.1 906.9 5806.1 290.1 2849.1 14477 35.4% 

 

6.3 Discussion 

The estimated coefficients from the proposed model reveal interesting trends in the SMTO data. Firstly, 
utility is negatively impacted by distance from a campus, which confirms findings from previous studies. 
However, this effect is reduced for students who indicate they are living with their family. This finding is 
logical as students who are not living with their family may be living on residence or have selected their 
place of residence according to their school location (rather than the other way around, as the model 
implies). Additionally, the coefficient for the closest school dummy is positive and significant, indicating 
that the closest campuses are more attractive to students. 

The enrollment term reflects the relative size of the different campuses and allows for the model to be 
potentially generalized to expanded choice sets including additional post-secondary schools. Domestic 
enrollment rate increases the utility of campuses to students living with their family. Presumably, 
students living with their family are more likely to be domestic, and hence attend a school with more 
domestic students. Although tuition information was available, in contrast to many previous studies, 
including tuition information did not significantly improve the model, even when interacted with 
household income. This result can be attributed to the marginal differences between tuition fees for the 
investigated schools. Finally, the estimated parameter for admission average confirms previous findings 
that greater selectivity increases the attractiveness of schools. 

7 2015 SMTO Location Choice – Random Forest 

This section describes the development of a random forest model to predict PS location choice based on 
the 2015 SMTO data. 
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7.1 Model Development 

In developing the random forest (RF) location choice model, socioeconomic variables (such as living 
arrangement and enrollment status) and geospatial variables (such as distances to the campuses) were 
tested. Due to the nature of RFs, passing in campus-specific information is unhelpful. Instead, the 
algorithm is expected to identify patterns related by campus-specific attributes implicitly. 

Since the meanings of different variables and their relationships to one another are not inherently 
captured in the RF, a feature engineering process was used to identify the best format in which to input 
geospatial information. Interestingly, the various approaches tested all showed fairly similar results. 
Because of the high cardinality of these variables, it is hypothesized that the RF model was overfitting 
the data by identifying “patterns” on a zone-by-zone basis. To avoid this problem, the planning district 
of student’s home zones is used along with columns indicating whether each campus is the closest to 
the student’s home zone is included (with all three downtown campuses pooled). As lower-cardinality 
variables, these are less susceptible to overfitting but still provide valuable information on the part of 
the GTHA in which each student lives. 

One benefit of RF models is that feature importances can be calculated and analyzed. These can be used 
to identify the most relevant features for the problem, a process known as feature selection. In this 
study, various individual and household characteristics were investigated. The most important 
socioeconomic variables were found to be living arrangement, level of study, household income range, 
and employment status. 

After selecting the features for the model input format, randomized and grid searches with cross-
validation, as implemented by sklearn, were used to establish the best hyperparameter settings. 
However, the gains from this approach were marginal: the optimal parameters were very similar to the 
default parameters and only small changes in the performance metrics were seen. 

7.2 Proposed Model 

Table 11: Selected Random Forest Model. All features except PlanningDistrict are dummy variables. DT = 
any downtown campus, YK = York Keele, MI = U of T Mississauga, SC = U of T Scarborough. PT = Part-
time. Log likelihood, rho squared omitted since some observed choices are assigned a probability of 0. 

Feature Importance Std. Dev 

PlanningDistrict 42.99% 0.59% 

LevelGrad 9.69% 0.11% 

Family 8.12% 0.20% 

Closest.DT 7.78% 0.46% 

Closest.YK 5.91% 0.28% 

StatusPT 4.00% 0.09% 

WorkYes 3.80% 0.11% 

IncomeLow 3.78% 0.12% 

IncomeHigh 3.78% 0.06% 

Closest.MI 3.54% 0.19% 

Closest.SC 3.47% 0.13% 

WorkNo 3.14% 0.11% 

Metric Testing Set Training Set 

Hardmax Accuracy 48.30% 58.07% 

Softmax Accuracy 39.97% 46.69% 
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Table 11 shows the results and feature importances for the proposed RF model. The metrics reported 
are the model’s average performance on a separate testing set across ten trials. 
The out-of-sample hardmax accuracy for the RF model is almost two percentage points higher than for 
the MNL model. This is unsurprising since the RF is trained so as to optimize the hardmax accuracy. 
More interestingly, the RF out-of-sample softmax accuracy is over 4.5 percentage points better than for 
the proposed logit model. As such, the RF is outperforming the MNL model on both metrics. Tables 12 
and 13 show the hardmax and softmax confusion matrices for the proposed model’s performance on a 
reserved testing set. 

Table 12: Hardmax Confusion Matrix for Proposed Random Forest Location Choice Model 

Obs\Pred MI OC RY SC SG YG YK Observed Accuracy 

MI 133 0 30 0 42 0 45 250 53.2% 

OC 14 0 27 6 54 3 11 115 0.0% 

RY 58 0 164 50 237 6 122 637 25.7% 

SC 4 1 63 111 49 0 48 276 40.2% 

SG 61 1 167 45 1056 13 158 1501 70.4% 

YG 2 0 16 8 25 5 14 70 7.1% 

YK 50 0 105 41 249 0 326 771 42.3% 

Predicted 322.0 2.0 572.0 261.0 1712.0 27.0 724.0 3620 49.6% 
 

Table 13: Softmax Confusion Matrix for Proposed Random Forest Location Choice Model 

Obs\Pred MI OC RY SC SG YG YK Observed Accuracy 

MI 80.0 5.9 47.8 4.2 56.1 5.8 50.2 250 32.0% 

OC 7.4 5.0 27.1 8.2 45.0 3.6 18.7 115 4.3% 

RY 42.6 22.9 163.8 47.4 222.0 16.4 121.9 637 25.7% 

SC 4.9 8.4 57.2 83.1 61.2 7.0 54.2 276 30.1% 

SG 52.3 45.3 240.4 68.3 826.5 27.5 240.6 1501 55.1% 

YG 3.6 2.1 14.5 6.7 19.8 6.0 17.2 70 8.6% 

YK 44.7 20.3 139.7 48.3 229.1 20.6 268.3 771 34.8% 

Predicted 235.6 109.8 690.6 266.2 1459.8 86.9 771.1 3620 39.6% 

8 2015 SMTO Discussion 

As discussed in previous sections, the performance of the proposed RF model is slightly superior to that 
of the logit model. This result suggests that machine learning techniques, and especially the RF 
algorithm, are tools that can be used effectively for the PS location choice problem. Further 
investigation and experimentation on this front are warranted, and would establish whether RFs  are 
similarly effective in other discrete choice contexts. Despite the better performance of the RF model, it 
is arguable that are several reasons why the logit model should be preferred for operational use. 

Breiman (2001) notes that as the number of trees is increased, the RF avoids overfitting. Furthermore, 
Segal (2004) shows that hyperparameter tuning, such as restricting tree depth, the number of splits, or 
minimum node size for splits, can curb this effect. In this study, the use of high-cardinality variables 
(such as distances, coordinates, or home zone labels) is also avoided, instead opting for lower-cardinality 
features (planning districts), which further reduces the potential for overfitting. However, while these 
methods can address overfitting to the sample data, the RF remains flawed when it comes to the 

https://link.springer.com/content/pdf/10.1023/A:1010933404324.pdf
https://escholarship.org/uc/item/35x3v9t4
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model’s generalizability. This flaw can be considered from two lenses: generalizing patterns from the 
sample to the entire student population, and generalizing the model to different contexts (such as for 
forecasting, or for a different choice set). 

Firstly, sample bias may result in certain groups being under- or over-represented in the SMTO data. 
This would result in the RF making predictions based on relationships that do not accurately reflect the 
entire student population. For instance, if students attending campus 𝑗 from a certain planning district 
have been oversampled, students from this planning district will consistently be assigned a higher-than-
accurate probability of attending campus 𝑗. Hence, the RF model may not generalize effectively from the 
sample to the broader student population. While an elaborate weighting scheme could alleviate this 
issue, the creation of such a scheme would rely on more complete demographic information for 
different campuses, information that is not readily available. 

The logit model is likely to be less sensitive to this issue. As a behavioural model, patterns in the sample 
are not “hard-wired” into the predictions in the same way as for the RF. This is especially true in this 
analysis given avoidance of the use of alternative-specific coefficients. Using the example above, while 
the over-sampling of students from said planning district to be attending campus 𝑗 might suggest a 
more/less sensitive response to distance, this sensitivity will not greatly influence the parameter since 
the behaviours of all students in the sample are considered together. 

Secondly, the RF model is not appropriate if the results are to be generalized to other contexts. The RF 
relies on patterns that exist in the sample, but cannot be effectively adapted to other contexts. For 
example, if the enrollment of a campus were to change significantly, the RF could not be used to 
effectively forecast college choice patterns. In contrast, enrollment is included as an alternative-specific 
variable in the logit model, so one would expect the logit model to be more generalizable. 

In the case of changes in students’ behavioural patterns, these observations cannot be inputted to the 
RF model. As a specific example, if a model for the future is predicted, and observations suggest that 
future students are less responsive to distance, this pattern cannot be conveyed to the RF algorithm, 
whereas for the logit model, a modified distance parameter can be imposed. 

Furthermore, due to the nature of RF, such a model could not be used to generalize findings to a 
different choice set. In this analysis, one objective is to develop a model that would perform well on an 
expanded (more complete) choice set, such as that of the 2019 SMTO. This cannot be done with the RF. 
However, by excluding alternative-specific coefficients, such a generalization can be completed with the 
logit model. Below, it is shown that this generalization actually performs quite well when generalizing 
the logit model from the 2015 SMTO to the 2019 SMTO. 

For all these reasons, subsequent analysis focuses on the logit model approach. 

9 2019 SMTO Location Choice – Logit Model 

9.1 Repeating 2015 Model 

The first step for the 2019 SMTO analysis is to estimate an MLN model using the same formulation as for 
the 2015 dataset and compare the results. Since domestic enrollment rate and admission averages are 
not available for many campuses, these variables have been removed from the model. Enrollment data 
was gathered from Ontario's Open Data Team (2019). However, statistics are missing for some 
campuses listed by 2019 SMTO respondents. In these cases, enrollment was imputed based on the 
sampling rates for the survey. While these imputed enrollments provide reasonable grounds upon which 
to continue the analysis, more accurate information should be obtained to improve the model’s quality. 

https://data.ontario.ca/dataset/college-enrolment


15 

 

Table 14 presents estimation results for two models: one with coefficients estimated using the 2019 
dataset, and one with the same parameters as estimated with the 2015 dataset. 

Table 14: Initial Model Results for 2019 SMTO. *** indicates p < 0.001. Errors and significances for 2015 
Parameters are for the 2015 dataset. 

 2019 Parameters 2015 Parameters 

Parameter Estimate Std. Error  Estimate Std. Error  

 Β𝐷𝑖𝑠𝑡 -0.0113 0.0004 *** -0.1089 0.0024 *** 
 Β𝐿𝑜𝑔(𝐸𝑛𝑟𝑜𝑙) 0.9249 0.0081 *** 0.8991 0.0121 *** 

 Β𝐶𝑙𝑜𝑠𝑒𝑠𝑡 2.4371 0.0386 *** 0.9042 0.0413 *** 
 Β𝐷𝑖𝑠𝑡_𝐹𝑎𝑚𝑖𝑙𝑦 -0.0023 0.0006 *** 0.0507 0.0027 *** 

Metric       
Hardmax Accuracy 0.2645   0.3302   
Softmax Accuracy 0.1763   0.2418   

Log Likelihood -38558.5   -53807.0   
 
Surprisingly, the 2015 parameters lead to better classification accuracies than the 2019 parameters, 
although they do not maximize log-likelihood. This phenomenon can be explained by the fact that log-
likelihood is heavily swayed by the least likely observations. While such observations cannot be ignored, 
the quality of a model should not be dictated primarily by these. A more wholistic approach including 
alternative metrics such as accuracy is warranted. 

Additionally, the sign for Β𝐷𝑖𝑠𝑡_𝐹𝑎𝑚𝑖𝑙𝑦 has changed, suggesting that students living with their 

family/parents are more responsive to distance than other students. This result is surprising, and may be 
influenced by response bias, as the 2019 dataset has a much lower response rate for living arrangement. 

Finally, the distance parameter has significantly decreased in magnitude for the 2019 parameters. This 
may be a consequence of the significantly larger geographic spread of the campuses included in the 
2019 dataset. Furthermore, some students may have indicated their permanent address as their home 
location, rather than the location from which they commute to school. Both these effects could drive 
the distance parameter to be smaller in magnitude, rather than a chance in PS choice behaviours. 

9.2 Subset Results 

A more apt comparison of the trends in 2019 and 2015 can be made by estimating a model only on 
students attending the seven campuses from the 2015 dataset. Table 15 shows the results for the 
location choice model with three datasets: the 2015 dataset, the subset of the 2019 dataset containing 
students attending the seven campuses from the 2015 dataset, and a joint dataset with naïve pooling. 

These results show relatively consistent estimates of the coefficients for the 2015 and 2019 datasets, 
with similar signs and magnitudes for both. Thus, the drastic change in the distance parameter for the 
full 2019 model is not representative of the entire sample. Instead, it is possible that the addition of 
more campuses outside Toronto has influenced the distance parameter. Another possible contributing 
factor is that distance is perceived differently by students attending college rather than university.  
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Table 15: Results of Proposed Model for Sample Subsets. *** indicates p < 0.001. 

 2015 2019 Subset Joint (naïve pooling) 

Parameter Estimate Std. Error  Estimate Std. Error  Estimate Std. Error  

 Β𝐷𝑖𝑠𝑡 -0.1089 0.0024 *** -0.0892 0.0020 *** -0.0927 0.0014 *** 
 Β𝐿𝑜𝑔(𝐸𝑛𝑟𝑜𝑙) 0.8991 0.0121 *** 0.8404 0.0132 *** 0.8660 0.0089 *** 

 Β𝐶𝑙𝑜𝑠𝑒𝑠𝑡 0.9042 0.0413 *** 1.0644 0.0474 *** 1.0258 0.0316 *** 
 Β𝐷𝑖𝑠𝑡_𝐹𝑎𝑚𝑖𝑙𝑦 0.0507 0.0027 *** 0.0370 0.0028 *** 0.0375 0.0018 *** 

Metric          

Hardmax Accuracy 0.4622   0.3840   0.4293   

Softmax Accuracy 0.3479   0.3069   0.3301   

Log Likelihood -19307.1   -15560.4   -34801.3   

Mean loss -1.334   -1.421   -1.369   

 

9.3 Nested Logit Model 

The most natural approach to emphasize the distinction between college and university students is by 
implementing a nested logit (NL) model, where the university campuses are in one nest and the college 
campuses are in another. Table 16 presents the results for two NL formulations compared with the un-
nested MNL. From these results, it is seen that the NL model with nesting by institution types is not 
effective. In particular, two of the three scale parameters are greater than 1.0 in value (violating the 
assumed nesting structure) and the third is not statistically different from 1.0 in value at standard 
confidence levels. As such, a different approach to distinguish between university and college students is 
desired. 

Table 16: Results for Nested Model for 2019 Location Choice. A 𝜇 > 1 implies greater correlation across 
nests than within. 

 Reference (Un-nested) Nested – One Scale Param. Nested – Two Scale Params. 

Parameter Estimate Std. Error  Estimate Std. Error  Estimate Std. Error  

 Β𝐷𝑖𝑠𝑡 -0.0113 0.0004 *** -0.0185 0.0005 *** -0.0139 0.0004 *** 
 Β𝐿𝑜𝑔(𝐸𝑛𝑟𝑜𝑙) 0.9249 0.0081 *** 1.2874 0.0198 *** 0.8946 0.0245 *** 

 Β𝐶𝑙𝑜𝑠𝑒𝑠𝑡 2.4371 0.0386 *** 3.6470 0.0835 *** 2.6111 0.0769 *** 
 Β𝐷𝑖𝑠𝑡_𝐹𝑎𝑚𝑖𝑙𝑦 -0.0023 0.0006 *** -0.0037 0.0006 *** -0.0021 0.0004 *** 

 𝜇𝑢𝑛𝑖    
1.6184 0.0336 *** 

1.1639 0.0282 *** 

 𝜇𝑐𝑜𝑙     0.9564 0.0357 *** 

Metric          

Hardmax Accuracy 0.2645   0.2473   0.2474   

Softmax Accuracy 0.1763   0.1786   0.1772   

Log Likelihood -38558.5   -38277.2   -38261.1   

 

9.4 Random Forest Probabilities and Predictions 

To refine the 2019 model further, it was necessary to better distinguish between university and college 
students. Having seen the effectiveness of machine learning techniques in classifying living 
arrangement, a RF model to classify students according to their institution type was developed, 
optimizing the F-1 score with respect to “College”. The developed model has an F1 score of 0.4998. The 
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feature importances are shown in Table 17, and Table 18 shows the confusion matrix for the model on a 
reserved validation set. 

Table 17: Feature Importances for Selected Random Forest School Type Classifier. All features except 
PlanningDistrict and Age are dummy variables. ClosestUni is 1 if the student’s home zone is closest to a 
university campus, 0 otherwise. 

Feature Importance 

PlanningDistrict 44.32% 

Age 34.25% 

ClosestUni 5.50% 

IncomeLow 2.85% 

FamilyTrue 1.90% 

LicenceFalse 1.85% 

FamilyFalse 1.83% 

Cars2+ 1.69% 

IncomeHigh 1.58% 

LicenceTrue 1.48% 

Cars1 1.45% 

Cars0 1.30% 

 
Table 18: Confusion Matrix for School Type Classifier 

Obs\Pred College University Observed Accuracy 

College 2632 711 3343 78.7% 

University 352 531 883 60.1% 

Predicted 2984 1242 4226 74.8% 

 
Several ways to integrate the results of the random forest model were tested: 

• P_Col: The RF-generated probability that the student is a college student, included in the utility 

function for colleges only. 

• P_Uni: The RF-generated probability that the student is a college student, included in the utility 

function for universities only. 

• P_Type: The RF-generated probability that the student attends a school of the alternative’s type, 

included for all schools. 

• Pred_Type: A dummy variable that equals 1 if the student is predicted to attend a school of the 

alternative’s type (using the optimal threshold from above) and 0 otherwise. 

The results for various combinations of these terms are shown in Tables 19 and 20. Another idea which 
was not yet tested is developing separate models for university choice and college choice. Then, 
students for which the RF provides a confident prediction can be assigned to the appropriate model, and 
the full model used for other students. However, this approach did not seem promising because of the 
high degree of confusion for the RF model. 
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Table 19: Parameters for Models with Random Forest Predictions and Probabilities 

 Β𝐷𝑖𝑠𝑡 Β𝐿𝑜𝑔(𝐸𝑛𝑟𝑜𝑙) Β𝐶𝑙𝑜𝑠𝑒𝑠𝑡 Β𝐷𝑖𝑠𝑡_𝐹𝑎𝑚𝑖𝑙𝑦 P_Col P_Uni P_Type Pred_Type 

Reference -0.0113 0.9249 2.4371 -0.0023     

P_Col -0.0103 1.1063 2.3362 -0.0024 2.6037    

P_Uni -0.0109 0.7139 2.3335 -0.0021  1.4250   

P_Type -0.0102 0.7391 2.2201 -0.0021   2.5745  

P_Col + P_Uni -0.0099 0.8225 2.1983 -0.0021 3.9158 2.2766   

Pred_Type -0.0102 0.8281 2.2473 -0.0022    1.4739 

 
Table 20: Performance Metrics for Models with Random Forest Predictions and Probabilities 

 Hardmax Accuracy Softmax Accuracy Log Likelihood 

Reference 26.45% 17.63% -38558.5 

P_Col 30.41% 19.15% -37380.3 

P_Uni 24.99% 18.16% -37471.8 

P_Type 28.49% 19.58% -35832.0 

P_Col + P_Uni 30.52% 20.06% -35521.9 

Pred_Type 30.84% 19.55% -36265.2 

10 2019 SMTO Discussion 

While the models integrating RF predictions offer an improvement over the reference model, the model 
remains largely ineffective once the more diverse choice set for the 2019 SMTO dataset is introduced. 
Furthermore, since a large portion of the sample was directly used to train the RF model, the results 
which take advantage of its predictions may not generalize well. 

Clearly, a significant limiting factor is identifying students’ institution type. Many students consider only 
one institution type in their choice sets so eliminating irrelevant alternatives for these students could 
lead to significant improvements in the model’s performance. Previous studies have shown such 
variables as academic performance, ethnic background, and participation in extracurricular activities in 
high school to be useful indicators for students’ selected institution type. Unfortunately, these variables 
are unavailable in this study. 

Another important observation is that maximizing log likelihood does not necessarily correspond with 
gains in other performance metrics. Particularly, the parameters estimated for the 2019 model result in 
significantly lower classification accuracies than those from the 2015 model. This finding demonstrates a 
flaw in maximizing log likelihood in such cases: the maximization is weighed towards the most unlikely 
observations and hence might not effectively improve the model’s holistic performance. This potential 
problem would be pronounced in unbalanced datasets, as is the case here. While this effect can be 
reduced by using only a subset of the data with a smaller, more balanced, choice set, it may not be 
possible to predict whether an observation belongs to the smaller choice set or not. 

11 Future Work 

Several avenues for future work that would build upon the analysis presented in this report are briefly 
described below. 

Generalization to TTS and Implementation in GTAModel: This project was undertaken with the hope of 
eventual implementation of the developed model within GTAModel. As such, creating a model that can 
be generalizable to an expanded choice set is critical. This necessitates avoiding the use of alternative-

https://tmg.utoronto.ca/doc/1.4/gtamodel/index.html
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specific coefficients in the logit model. However, it remains to be seen whether this approach can lead 
to solid results in a more generalized setting or not. One way to test this is by using data from the TTS to 
verify the performance of the model. An associated challenge is that the set of postsecondary 
institutions is much larger, and includes several smaller, specialized institutions. Using these data to 
adapt the model will allow for a final product to be developed that can be implemented effectively in 
GTAModel. 

Adjusting Enrollments by Level of Study: In this study, the location choice sets of students are not 
restricted in any way. However, if school choice sets could be constrained effectively model accuracy 
would likely improve. One way to constrain choice sets is by modelling the admissions process. A simple 
admissions model, such as the one used by Kohn et al. (1974) or Montgomery (2002), can be 
implemented and its effects on model performance observed. 

Modelling Choice Sets: While the SMTO data includes participants’ level of study (i.e. undergraduate vs. 
graduate), this variable was not used as it is not available in the TTS survey. However, adjusting the 
campus enrollments according to the student’s level of study would likely yield significant improvements 
to the model’s performance. This is because several campuses have much smaller populations of 
graduate students compared to undergraduates. In fact, from the RF model it is seen that level is indeed 
an important variable in the classification. If a model can be successfully trained to classify students 
according to their level of study (as has been done with living arrangement) given such variables as age, 
income, employment status, living arrangement, etc., then enrollment level can and should be included 
in the analysis. 

Exploration of Random Forest and Machine Learning Techniques: One noteworthy finding from this 
study was the effectiveness of the random forest classifier algorithm relative to the logit model. While 
using random forests comes with associated concerns, as discussed above, this foray into the realm of 
machine learning reveals that there is promising potential to use such techniques in PS location choice 
problems, and possible other discrete choice modelling applications. Further work in this area could lead 
to novel approaches being used in the field. 
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