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Abstract 
 

Calgary’s road network constitutes a major investment over many generations and plays a 
crucial role in the City’s well-being by guaranteeing its citizens with full accessibility, ensuring 
safe travel, and providing a strong business competitiveness through an efficient movement of 
goods and services. This study identifies key limitations in current pavement network life cycle 
cost analysis processes by comparing the results of traditional prioritization approaches to a 
true multi-year multi-constraint optimization analysis. The results shows that the optimization 
solutions outperformed prioritization at all years showing an average 5.3% improvement over 
the planning horizon and 9.3% by the end of the plan. Monetization methods also arrived at 
significant cost savings via added performance over a 10-year planning horizon by switching to 
a mathematically optimized solution. To further improve modeling accuracy and reliability of 
results, this study investigates the quality of performance models used within the pavement 
management system and discusses the development of machine learning-based deterioration 
models using decision tree regression. The effects of more modern performance modeling 
methods on investment planning is examined by comparing various optimization scenarios 
using both the ML-based and the traditional age-based deterioration models. The paper shows 
the importance of condition-based predictive modeling and integrating accurate performance 
models into the current asset management system to provide more accurate information on 
monitoring the network's life expectations, capital investment plans, and vulnerable communities 
with accelerated pavement deterioration patterns. 
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INTRODUCTION 
 
Municipal roads and highway systems are among the fundamental infrastructure assets that 
provide a foundation to the performance of all national economies by sustaining economic 
development and facilitating social interaction. Preserving and maintaining pavement assets has 
therefore been an important yet challenging task for governments under restricted funding 
programs. State and local governments in the United States spent $70 billion in 2014 alone on 
operation and maintenance activities (ASCE 2017). The 2016 Canadian Infrastructure Report 
Card reports a $48 billion replacement cost for pavements currently in poor condition, and a 
further $75 billion replacement cost for those in fair condition (CIRC 2016). The report card 
states that roads entail one of the largest gaps between current and target rates of 
reinvestment, with a current reinvestment rate of only 1.1% and a target recommended rate of 
investment at 2% to 3% as a percentage of asset replacement value. The 2019 CIRC (CIRC 
2019) reports that since 2016 the situation has deteriorated with 39% of road assets currently in 
the Very Poor/Poor/Fair categories compared to 37% in 2016. With the continued downloading 
of road assets to lower-tier municipalities the increasing burden of operation and maintenance 
programs falls to municipal  tax payers. Data from the Association of Municipalities of Ontario 
indicates that 67% of the roads in Ontario are under municipal jurisdiction, amounting to 
140,000 km of pavement with a combined operating and maintenance budget in the range of 
$40 billion per year (AMO 2016).  
 
Since the early 1990s the benefits of road preservation has been clear and consistent, and 
backed up by extensive case studies and research, that a well-executed preservation program 
delivers cost effective solutions in terms of overall network performance (Hicks et al. 1999; 
Bausano et al. 2004; Labi and Sinha 2005). Although pavement preservation and its 
effectiveness has been promoted extensively for road networks, its implementation within 
capital plans faces considerable impediments (Peshkin et al. 2004; Rashedi et al. 2017). The 
predominant focus of many local and municipal governments is still a ‘worst-first’ philosophy that 
allocates the bulk of available funds to major rehabilitation and reconstruction. The prevailing 
attitude is that preventive maintenance is a luxury they cannot afford, and the idea is not 
supported or properly understood by the political decision-makers. This is on the contrast to the 
fact that even a small improvement on investment efficiency in road networks can be easily 
translated into millions of dollars in cost savings. Considering the substantial funds spent 
annually on road networks and the socio-economic challenges associated with capital planning 
for most municipalities and transportation agencies, the fund allocation process needs to 
employ effective decision-making methods that are transparent, defensible, and technically 
robust. 
 
As a national champion in infrastructure asset management and a leader in utilizing advanced 
technologies for better asset management, the City of Calgary is dedicated to improving its 
asset management practices. To support this initiative, formalization of asset management 
planning is taking place through coordinative efforts of Corporate Analytics and Innovation 
(CAI). One of the key objectives of the CAI is to develop a integrated lifecycle management and 
financial plan that aligns levels of service to asset performance for various asset classes. 
Development and implementation of a comprehensive lifecycle management requires 
considerations at both network and project levels. Effective network-level analysis requires a 
comprehensive process comprising a detailed network inventory, up-to- date condition data, a 
catalogue of available preservation treatments, appropriate deterioration models for both “do- 
nothing” and with a range of treatment scenarios, and an estimation of costs and outcomes for 
all possible rehabilitation alternatives. These inputs are all used to formulate a detailed life cycle 
cost analysis model of the network to facilitate the allocation of the limited renewal funds 
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available to the City of Calgary. This study investigates various analytical methods to determine 
effectiveness and optimum timing of preservation and rehabilitation treatments. It shows that 
improvements in investment efficiency achieved by better decision-making methods can be 
translated into millions of dollars in cost savings and signifies the importance of utilizing 
powerful and practical decision support tools. This study also investigates the effects of more 
modern deterioration modeling methods for investment planning to provide more accurate 
information on the network's life expectations, capital investment needs, and vulnerable 
communities. 
 
 

DECISION-MAKING METHODS 
 
Fund allocation decisions represent a major challenge for most municipalities and transportation 
agencies, where a small improvement in investment efficiency can be translated into millions of 
dollars in cost savings. In addition, the process for fund allocation needs to be transparent, 
defensible, and technically robust. Many researchers have investigated various analytical 
methods to determine effectiveness and optimum timing of preservation treatments. The 
traditional methods typically use a priority ranking process based on multi-criteria or cost-benefit 
analyses, while the more advanced optimization methods that use rigorous mathematical 
analysis to arrive at the best possible outcome based on defined criteria. (Lamptey et al. 2008), 
for example, presented a case study for optimizing decisions in terms of the best combination of 
treatments and timings for a given highway section and determined that optimization can be a 
viable tool to support scheduling decisions for highway maintenance and to provide a rational 
and consistent basis for scheduling. (Haider and Dwaikat 2011), also recommended the need 
for a rational methodology to evaluate pavement preservation alternatives to maximize project- 
and network-level benefits using optimization. These examples and many more show that 
different methods of decision-making can be used to arrive at a final fund allocation plan, each 
with different implications and solution quality in terms of investment efficiency and network 
improvement effects. 
 
Priority ranking has been suggested and used in many pavement management applications 
(Zimmerman et al. 2011; Wolters et al. 2011).  Using ranking, projects are typically selected in 
order based on a calculated Priority Index (PI). Prioritization is generally performed based on 
agency policies, which can range from the subjective opinion of road managers to ageor 
condition-based ranking methods. Indicators such as pavement condition index (PCI) can be 
used to prioritize road segments. Other attributes such as functional class, traffic, or minimum 
service standards can also be used to determine a PI. Figure 1 shows a schematic procedure 
that can be used for fund allocation based on a priority ranking approach. After determining a 
PCI for each road segment, the entire network is sorted from the highest to the lowest priority 
segment. Next, the highest priority segment is selected and the required treatment type and its 
associated cost are determined. If the available budget is adequate to cover the cost, the 
segment and the associated treatment is selected. The cost of treatment is subtracted from the 
available budget and the process is repeated until all segments are covered and the available 
budget has been used up. The algorithm then moves to the next year until the entire planning 
horizon is covered. The process is illustrated in Figure 1. 
 
Another variant of the priority ranking approach is the decision tree method. If the priority policy 
or the decision criteria/rules have been optimized, the solution may not be very bad. The biggest 
problem of the current practice is that the priority policy/decision tree are determined with 'expert 
judgment' or subjective opinions, while those judgments or opinions are valid only at the project 
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level at the best. The typical example is the worst-first policy. Many people feel this is native and 
intuitive. But it's not optimal.  How to develop optimal decision criteria or prioritization rules that 
would automatically reach a network-optimum or near network-optimum is an interesting 
research question. 
 
 

At time = t 
Determine a Priority Index (PI) for each 

road segment j from 1 to N, and sort road 
segments based on PI from highest to the 

lowest priority.

Determine feasible treatment  for section j 
TR(j) and its associated cost $C(j). 

CapEx = CapEx + $C(j)

$B(t) >= CapEx 

Select TR(j) for Section j

CapEx = CapEx + $C(j)

j = j + 1

Annual Budget = $B(t)
Planning Horizon = T
No. of Segments = N
Prioritization Policy

CapEx = 0, t = 1, j = 1

Start

End

j <= NNo

Yes

t <= T

Yes

No t = t + 1

Yes

No

 
 

Figure 1: Schematic procedure for fund allocation using priority ranking 
 

 
One of the main problems with using condition-based priority ranking for fund allocation is the 
resulting “worst roads first” approach. Under this strategy, the most deteriorated roads, which 
require major rehabilitation treatments, are a huge sink into which the largest proportion of 
municipal road budgets is poured. Unfortunately, this worst-first policy is like a dog chasing its 
tail, it is impossible to get caught up because while the worst roads are being reconstructed at 
huge expense, the good roads are rapidly deteriorating due to lack of maintenance and will 
become the worst roads in a few years. The large percentage of roads in fair and poor condition 
by the end of the plan is an indication of this phenomenon. These sections will deteriorate 
further into poor condition at a higher rate (assuming that deterioration rates increase as 
condition decays) and will become future backlog. On the contrary, preventive maintenance 
would be a more cost-effective strategy to improve network outcomes. Another problem with 
priority ranking is the fact that it is performed on a yearly basis.As a result, it omits the time 
dimension of the analysis and does not have the capability to analyze the impact of time delays 
on the overall allocation of budget and network performance. Road network models need to be 
dynamic with the status being upgraded continually as maintenance work is performed. Another 
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key limitation of priority ranking is its inability to incorporate multiple constraints into the 
analysis, when in reality agencies have to deal with a multitude of constraints. 
 
Mathematical optimization is a branch of science in Operations Research (OR). Through a 
systematical evaluation of all possible feasible solutions, OR provides a scientific approach to 
decision making that seeks to optimize the performance of a system, usually under conditions 
requiring the allocation of scarce resources. OR originated during World War II when the British 
government recruited scientists from different disciplines to solve the operational problems of 
the war, such as the deployment of radar and the management of convoy, bombing, anti-
submarine, and mining operations, which coined the term Operations Research. In the context 
of optimization, a system can be a collection of interdependent entities that work together to 
accomplish the goal of the system. For example, a corporation can be thought of as a system 
whose goal is to maximize its profit, while subjected to resource constraints and regulations 
governing its business activities. The focus of optimization is, therefore, to understand the 
complex operations of a system so as to predict its behavior over time and to identify the best 
course of action that leads to an ideal level of performance, or in other words, an ‘optimal’ 
solution. This scientific approach to decision making usually involves the use of mathematical 
models to represent the system’s behavior in terms of objective functions, decision variables, 
and constraints (Winston & Venkataramanan 2003). 
In the context of pavement management, or more generally, asset management, the term 
optimization has been used rather loosely for methods such as cost-benefit analysis or priority 
ranking. These methods, however, cannot be categorized as formal mathematical optimization 
and are far less effective as compared to true optimization methods. Optimization, or 
prescriptive modeling “prescribes” a detailed course of action for an organization to best meet 
its goals. The ideal course of actions, or the “optimal” solution, is determined as a result of 
rigorous mathematical assessment of the optimization model, rather than using intuitive 
processes or on an ad hoc basis. Optimization models seek to find the value of decision 
variable that either maximize or minimize (i.e., optimize) an objective function under certain 
constraints that must be satisfied. Accordingly, optimization models have three main 
components: 

• Objective Function: In the case of capital planning and pavement preservation 
programming, the objective function is typically defined as maximizing the overall road 
network performance or condition projection over the planning horizon. Other examples 
of objective functions are minimizing cost, minimizing network risk level, or maximizing 
return on investment. It is important to note that the objective functions can be combined 
to represent a multi-objective optimization process. 

• Decision Variables: They are the variables that can be directly and freely changed by the 
decision maker and affect the performance of the system. In the case of capital planning, 
decision variables are typically defined at the network level as the timing of interventions 
and selection of road segments. At the project level, decision variables are concerned 
with selecting a treatment option among various possible alternatives. The optimized 
values of these decision variables answer the key questions about which road segment 
to be repaired with what treatment at what time. 

• Constraints: In real life, only certain values for decision variable represent a practically 
feasible solution. Government agencies operate within a multitude of restrictions when 
planning future investments. These restrictions represent optimization constraints. In the 
case of capital planning problems, restrictions such as annual budget limits, minimum 
level of service requirements, operational considerations, resource and manpower 
limitations, and political requirements are examples of optimization constraints. 
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Formulating the network capital planning to an optimization is one thing, and solving the 
optimization is quite another challenging task. (Abaza, 2007). One of the key challenges is the 
exponential increase in solution space size as the number of road sections and consequently 
decision variables increase (Al-Bazi & Dawood, 2010). Renewal fund allocation represents a 
type of optimization, called ‘combinatorial’ problem that deals with finding the best possible 
solution amongst a large number of possibilities based on the combination of decision variables. 
While literature efforts provided useful models, their solution quality and speed greatly 
depended on problem size and model efficiency. Increasing problem size significantly affects 
the optimization results and degrades the performance, resulting in prohibitive processing time 
(Cook et al., 1997, Rashedi and Hegazy 2014). To handle complex combinatorial problems, the 
trend in recent literature has been to use evolutionary optimization techniques, such as genetic 
algorithms (GAs) (Liu et al., 1997). In addition to GA, more rigorous mathematical methods such 
as mixed integer programming can also be employed in this domain (Winston & 
Venkataramanan 2003). Recent enhancement in advanced optimization technologies has led to 
the development of practical decision support tools that utilize true optimization capabilities to 
produce plans that result in the highest investment efficiency. 
 
 

DECISION SUPPORT TOOLS 
 
Decision support tools (DSTs) are software products developed to support decision makers in 
making better decisions, faster. Real-life decision-making process is complex even when 
decision makers understand that DSTs help to make connections between the data, improve 
information management processes, provide a better picture of the current state of infrastructure 
ad future expectations, combine advanced analytics with powerful predictions, and assist in 
finding the best possible course of action. To achieve the last objective, only decision support 
tools with a true mathematical optimization engine can grantee the best course of action to be 
identified. To perform a true optimization analysis, this study has used a commercial software 
provided by the Canadian company Infrastructure Solutions Inc., called Decision Optimization 
Technology (DOT)™ software (for more information visit www.infrasolglobal.com). The core 
analytical capabilities of DOT™ are based on over 10 years of doctorate level scientific research 
and development on infrastructure management decision support systems using componential 
intelligence and advanced mathematical optimization methods. DOT™ has been developed in 
collaboration with a large number of Canadian municipalities, engineering companies, 
construction firms, and academic institutions with a focus on infrastructure and pavement 
management systems. DOT™ provides a true mathematical optimization algorithm that 
calculates a multi-year, multi-constraint maintenance and capital plan that maximizes the overall 
performance of the network. The optimization algorithm finds an optimal budget allocation plan 
by maximizing an objective function defined by specified criteria, while also taking into account 
various ancillary requirements such as budget constraints, treatments and costs, level of service 
objectives, operational requirements, and alignment with other departments. Classic 
prioritization methods cannot guarantee an optimal outcome and only compare different 
alternative actions based on a priority index. DOT™ optimization on the other hand, finds the 
best possible outcomes in terms of a combination of actions, such as selection of assets, 
selection of treatment alternatives, and timing of interventions, out of millions and billions of 
possible combinations, within a very efficient and fast processing time using the latest 
optimization technologies. The outcome of the optimization, therefore, considers the trade-offs 
between delaying and accelerating interventions or alternative ways of allocating budget across 
all available options. The resulting plan is hence defensible as it is mathematically guaranteed 
to be the best possible solutions and results in a much more efficient investment strategy. 

http://www.infrasolglobal.com/
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OPTIMIZATION VS. PRIORITIZATION 
 
The City of Calgary’s road network data was used in this study. The total road network size 
under analysis is 6,492.2 centerline kilometer consisting of 71,047 road segments. Current 
condition assessment results show an overall network condition of 5.8 weighted average by 
road length. Based on current data, 4.1% of roads are in very poor (PQI < 2) condition, 13.5% in 
poor (2 < PQI < 4), 36.1% in fair (4 < PQI < 6), 35.4% in good (6 < PQI < 8), and 10.9% in 
excellent (8 < PQI < 10) condition states. Data based on functional class shows that 51.8% of 
the network (3,365.2 km) consists of Local roads with 11% in poor and 7% in very poor 
condition. Collector roads represent 18.8% (1,223.2 km) of the network with 18% in poor and 
less than 1% in very poor condition states. Arterial roads represent 29.3% (1,903.8 km) of the 
network with 15% in poor and less than 1% in very poor condition states.  
 
The GIS data are in polyline format. To incorporate criticality related factors, all sections were 
tagged for Truck Route, Bus Route, Bikeway, School and Hospital access. Any number of these 
factors can be used to establish criticality settings, in addition to other physical attributes such 
as Functional Class, Roadside Environment, Service Type, etc. Condition Ratings were 
supplied based on the PQI (Pavement Quality Index) assessment method. Condition 
assessment data provided for the analysis were assumed to be updated by the City to 2020 
numbers. PQI is used for the analysis as the main network performance indicator. Figure below 
shows the distribution of PQI values used in the analysis. 
  
 

 
Figure 2: The 2020 Network PQI Distribution 

 
 
The City’s current prioritization process uses linear deterioration models. The expected service 
life of roads in different functional classes are set to 25 years for Arterial, 34 years for Collector, 
and 50 years for Local roads. The current models are based on an assumption of 0.2, 0.3, and 
0.4 point reduction in PQI per year for Local, Collector, and Arterial roads, respectively. The 
result of the analysis uses a 0 to 100 scale for the PQI values. This study will further investigate 
the impact of a more accurate deterioration modeling process on the results. To have an 
apples-to-apples comparison, both the City’s current prioritization methodology and ISI’s 
optimization results ran through the exact same base models in terms of deterioration, treatment 
alternatives, decision rules, and prioritization factors. Both scenarios used a $40M annual 
budget constraint with a predefined distribution limit based on functional classes. 
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Figure 3: The City of Calgary’s road network condition GIS view (DOT™ software) 
 
 
The prioritization scenario was performed under a $40M annual budget constraint. A predefined 
distribution based on functional class was also imposed to allocate maximum 50% of available 
budget to arterial, 40% to collector, and 10% to local roads. Results show an overall network 
condition deterioration over the 10-year plan from 5.8 in year 2020 to 4.3 in year 2030. The 
most significant deterioration can be found on Arterial roads as shown in the condition projection 
chart by functional class. Arterials are expected to deterioration from 5.9 in 2020 to 3.2 in 2030. 
Local roads are also deteriorating from 5.8 in 2020 to 4.4 in 2030. Collector roads, however, 
improve slightly from 5.5 in 2020 to 5.7 in 2030. 
 

 
Figure 4: Condition projection based on functional class using prioritization 
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Network condition distribution results show that percentages of roads in poor and very poor 
conditions are increasing from 17% in 2020 to 51% in 2030. Consistent with the overall 
condition projections, Arterial roads show the most significant deterioration with 74% being in 
poor and very poor conditions by the end of the plan. The percentage of Collector roads in poor 
and very poor is expected to deteriorate from 20% in 2020 to 34% in 2030. 
 
 

 
Figure 5: Network 10-year condition distribution using prioritization 

 
 
Optimization scenario was performed under the exact same conditions as the prioritization 
scenario for an apple-to-apple comparison. Therefore, a $40M annual budget constraint with 
predefined distribution constraint to allocate maximum 50% of available budget to arterial, 40% 
to collector, and 10% to local roads. Optimization results show an overall network condition 
deterioration from 5.8 in year 2020 to 4.7 in year 2030. Arterials are expected to deteriorate 
from 5.9 in 2020 to 4.1 in 2030. Local roads are also deteriorating from 5.8 in 2020 to 4.4 in 
2030. Collector roads improve from 5.5 in 2020 to 6.1 in 2030. 
 

 
Figure 6: Condition projection based on functional class using optimization 
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Network condition distribution results show that by the end of the plan the percentage of roads 
in poor and very poor conditions is increasing from 17% in 2020 to 44% in 2030. Arterial roads 
deteriorate to poor and very poor condition from 16% in 2020 to 57% in 2030. The collector 
roads percentage of segments in poor and very poor slightly increases, however, the 
percentage in excellent and good condition significantly increases from 37% in 2020 to 61% in 
2030, resulting in an overall improvement in their condition. Local roads deterioration to poor 
and very poor condition is from 18% in 2020 to 43% in 2030. 
 
 

 
Figure 7: Network 10-year condition distribution using optimization 

 
 
Average network condition over the 10-year planning horizon under the prioritization method is 
49.5. Using the mathematical optimization method, the average condition over the plan is 
improved by 5.3% to 52.1 representing a globally optimum solution. Also, expected condition by 
the end of the plan is improved by 9.3% under the optimization from 4.4 to 4.7 PQI in year 2030. 
As shown in figure below, optimization outperforms prioritization at all years with higher network 
overall condition values. Average network improvement effect over the 10-year plan on Local, 
Collector, and Arterial roads are 0.4%, 5.3%, and 12.2%, respectively. End-of-plan network 
condition distribution results show that under the prioritization method 398 more kilometers of 
roads will be in poor and 62 more kilometers in very poor condition by the end of the plan, as 
compared to the optimization results. For Local roads, the optimization output maintains 55 
more kilometers of roads in Good and Excellent conditions as compared to prioritization. For 
Collector roads, under the optimization scenario, 87 more kilometers of roads will be maintained 
in good and excellent conditions and 134 less kilometers in poor and very poor condition. For 
Arterial roads, optimization results in 273 more kilometers of roads in good and excellent 
conditions and 318 less kilometers of roads in poor and very poor condition. Figures below 
show the total length of roads in different condition states by the end of plan under optimization 
and prioritization cases for the network and each functional class. 
 
Different approaches can be utilized to determine the cost saving implications of the difference 
in results. As an example, in case of Arterial roads, one can calculate the estimated cost of 
rehabilitating the additional 318 kilometers of Arterials in poor and very poor conditions in the 
case of prioritization. Assuming treatment option MI120MM for very poor Arterials and 
MI100MM for poor Arterials based on the decision rules, and 9 meters average width for arterial 
roads segments (this was determined based on available GIS data), the total cost savings can 
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be estimated at over $100 million dollars. Another approach is to determine how much more 
investment is required to get to the same level of performance as the optimization solution, by 
gradually increasing the prioritization scenario’s budget. Optimization results under a $40M 
annual budget limit ($400M 10-year investment) showed a 10-year average condition of 52.1, 
while prioritization resulted in a 10-year average of 49.5. Increasing prioritization annual budget 
from $40M to $45M improved 10-year average condition from 49.5 to 50.5, and further increase 
to $50M improved condition to 51.2. It is important to note that although in some years 
prioritization scenarios with different investment levels show the same overall condition, the 
results are slightly better in higher budget scenarios. The effect on overall condition values in 
some years, however, is relatively small, considering the size of the network, and therefore not 
visible due to rounding effects. These improvements are verifiable by using condition distribution 
charts. As seen by these results and under both monetization approaches, the improvement 
effect of using a true optimization method can be translated into over a $100M in cost savings 
due to added performance that represents 25% of the $400M total 10-year investment. 
 
 

 
 

Figure 8: Kilometer of roads in different condition states by the end of plan (year 2030) 
 
 

IMPACT OF DETERIORATION MODELLING 
 
Different deterioration modelling techniques can be used to predict the expected conditions of 
road segments. Determination of the effectiveness and optimum timing of interventions requires 
the selection of a set of accurate deterioration models. The City’s current prioritization process 
used a linear deterioration modeling approach based on expected service life (ESL) for roads in 
difference functional classes. Accordingly, ESLs of 25, 34, and 50 years were assigned to 
Arterial, Collector, and Local roads, respectively. The ESL determination is typically based on 
engineering judgement and the expected traffic volumes based on functional classes. 
 
To investigate the sensitivity of the analysis and the capital planning outputs to the deterioration 
modeling methods, this study investigates the impact of a more rigorous deterioration modeling 
approach using decision tree regression analysis. The outputs of the decision tree model are 
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compared with the linear ESL-based model. The decision tree regression is a non-parametric 
supervised machine learning approach that partitions datasets into different groups and 
provides the regression outcome for each group (Loh, 2002). The decision tree model analyzes 
pavement behavior considering a wider range of attributes including road class, community, 
district, bus route, truck route, school area, and the starting condition, as compared to the ESL 
model that is purely age-based. Due to the data limitations, the comparison analysis is 
conducted on a sub-set of the Calgary’s road network data, representing 1,165 pavement 
sections representing 316.2 centerline kilometers or roads with a focus on Collector and Arterial 
roads only. Ten distinct deterioration models based on community data were developed using 
the decision tree regression process as shown in Figure 9. The ‘Calgary Linear- ART’ and 
‘Calgary Linear- COL’ also show the ESL-based linear curves for arterial and collector roads, 
respectively. As shown in Figure 9, one of the key differences between the two modeling 
approaches is that the decrement of the condition index is fixed in the whole lifespan in the case 
of the linear ESL-based deterioration models, while the decision tree model predicts the 
decrements at each step to build the deterioration curve by deducting the decrements from the 
condition value of the previous step. The decision tree approach, therefore, results in a wider 
range of deterioration curves with a higher degree of variation in the expected service lives. 
 
 

 
 

Figure 9: Decision tree and ESL-based deterioration curves 
 
 

To perform a direct comparison between the two modeling approaches, all inputs including 
treatment alternatives, decision rules, and prioritization factors, are kept the same, and only the 
deterioration models are changed. Three scenarios have been designed to investigate the 
impact of the two deterioration modeling approaches under different circumstances. First, a 'Do-
Nothing' scenario is designed to investigate the difference between the expected network 
condition decay over a 10-year planning horizon under each deterioration modeling approach. 
Next, a 'Maintain Current' scenario is designed to investigate the difference in investment needs 
to maintain the current condition of the network using the linear and decision tree models. 
Finally, a 'Fixed Budget' scenario is designed to investigate the expected level of service 
attainable under each case with an annual budget limit of $2.5M. Under the ‘Do-Nothing’ 
scenario, the condition of the network deteriorates from 59 at the beginning of the plan, to 25.5 
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and 22.2 by the end of plan using the linear model and the decision tree model, respectively. 
Do-Nothing results show a more optimistic projection under the linear model, with a significant 
difference of 57% in project condition for Collector roads as shown in Figure 10. 
 

 
Figure 10: Do-Nothing deterioration projection for Collector roads 

 
 
 
Under the 'Maintain Current' scenario the level of service is set to be the same throughout the 
planning horizon. As shown in Figure 11, under the linear model, the average 10-year 
investment need is estimated at $2.3M, while the decision tree model projects a $2.6M average 
annual investment need, showing a $3M difference over a 10-year planning horizon. 
Considering that the analysis is only looking at a sub-set of the network data, extrapolation of 
the results would suggest a significant backlog if the financial plan was based on the predictions 
of the linear ESL-based model. 
 

 
 

Figure 11: 10-year investment needs under decision tree and ESL deterioration models 
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Under the 'Fixed Budget' scenario with an annul budget limit of $2.5M, the overall condition 
index of the network increased from 59 to 62.8 and 67.2 using the decision tree and the linear 
models, respectively. The condition distribution results show a larger portion of the network in 
the poor and very poor condition states under the decision tree model confirming that the linear 
ESL-based models underestimate the deterioration rates throughout the planning horizon.  
 
 

 
Figure 12: Kilometer of roads in different condition states by the end of the 10-year plan 

 
 

CONCLUSIONS 
 
This study compared the results of a prioritization approach and a true mathematical 
optimization approach for investment planning using the City of Calgary’s road network data. 
The results showed that the average network condition over the 10-year planning horizon 
deteriorates under both prioritization and optimization methods. Optimization, however, 
outperformed prioritization at all years showing an average 5.3% improvement over the planning 
horizon and 9.3% by the end of the plan. Monetization methods arrived at an estimated $100M 
cost savings via added performance over the 10-year planning horizon by switching to a 
mathematically optimized solution.  
 
One of the main problems with using condition-based priority ranking methods is the resulting 
“worst first” plan. Under this strategy, the most deteriorated roads are a huge sink into which the 
largest proportion of budgets is poured for major rehabilitation. Unfortunately, this policy of worst 
first is like a dog chasing its tail, it is impossible to get caught up because while the worst roads 
are being reconstructed at huge expense, the good roads are rapidly deteriorating due to lack of 
maintenance and will become the worst roads in a few years. This is despite the fact that 
preventive maintenance, if applied to these sections, could be a more cost-effective approach to 
improve network outcomes. Another problem with priority ranking is the fact that it is performed 
on a yearly basis, therefore, it omits the time dimension of the analysis and does not have the 
capability to analyze the impact of time delays on the overall allocation of budget and network 
performance. Road network models need to be dynamic with the status being upgraded 
continually as maintenance work is performed. Another key limitation of priority ranking is its 
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inability to incorporate multiple constraints into the analysis, when agencies like the City of 
Calgary deal with a multitude of constraints. This study also investigated the sensitivity of 
outcomes to the deterioration models used within the pavement management system and 
compared machine learning-based deterioration models using decision tree regression with 
linear ESL-based models. The comparison results showed that the linear ESL models generally 
underestimate the deterioration rates throughout the planning horizon and can result in a 
significant unexpected backlog.  
 
The ESL-based linear models may significantly underestimate the rate of deterioration, and as a 
result, distort the efficiency of an optimizer. Under the level of service constrain, the general 
linear models cause a large percentage of poor and very poor asset; and under a fixed budget, 
an over optimistic prediction leads to deficit projects. Besides optimization approach, a 
deterioration model based on local assessment data is another key factor to the quality of 
condition-based financial planning. The improvements achieved through an optimized solution 
can be translated into substantial higher level of service to the community as shown by this 
study. A capital planning tool with optimization capability can maximize the overall performance 
of a network over a multi-year analysis horizon while satisfying multiple constraints, such as 
budget limits, levels of service, operational considerations, alignment with other departments, 
etc., all at the same time. The resulting fund allocation plan represents the best possible course 
of action in terms of timing and selection of assets and treatment alternatives. Instead of 
prescribing a fixed budget for each road class, as was done in this comparison, an optimized 
solution can determine the best ratio for allocating the available budget by imposing specific 
Level of Service constraints for each road class. The optimization’s ability to effectively meet 
various criteria from all stakeholders can result in a much higher support from the political 
council and the community during the funding approval and project justification process. This 
leads to a defendable, practical, and technically robust plan that results in the highest 
investment efficiency of the taxpayer money. 
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