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ABSTRACT 
 
Although travel time is an important performance measure for transportation professionals, 
congestion is perhaps a more important consideration for road users. Congestion is a dynamic 
phenomenon with variation across both space and time making it a promising application of 
smartphone-collected GPS data. The purpose of this study is to utilize GPS data collected using 
a smartphone application and regular drivers to estimate congestion at both the macroscopic and 
microscopic level across an urban road network. Data is collected using the “Mon Trajet” 
smartphone application in Quebec City, Canada. This data consists of nearly 50,000 trips 
collected during 3 weeks from approximately 5000 drivers. The application allowed for the 
collection of a large number of trips from regular drivers using a system that minimally impacts 
them or their behaviour. Given the large spatio-temporal dimension, several data issues are 
identified and corrected using the presented methodology. First, position of the GPS traces is 
provided in terms of a latitude and longitude and is not linked spatially to the road network. 
TrackMatching is a commercially available map-matching service used to match GPS data to the 
OpenStreetMap road network. Speeds are smoothed, and level of congestion is computed using 
the Congestion Index (CI). CI is computed at the individual link level at time intervals of 1 hour, to 
yield a detailed picture of congestion both across time and space. Finally, the progression of 
congestion over time is mapped across the entire road network and congestion variability across 
different time scales is computed. 
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INTRODUCTION 
 
Maintaining adequate levels of service within urban road networks requires accurate and 
quantitative measures of system performance. Performance measures are necessary for 
transportation professionals to operate existing transportation networks and plan future facilities 
(1). For the driving population, network performance influences travel choices (2). Perhaps the 
most common performance measure, link or route travel time, continues to grow in importance 
for both road users and practitioners (3). For traffic operators, “travel time is one of the most 
important measures for evaluating the performance of traffic networks” (2) and is a key parameter 
defining traffic state (4). For road users, travel time is easily understood (2). Although travel time 
is easily communicable, it may not be the biggest factor influencing travel decisions. Congestion, 
or travel time reliability, may be more important to road users and may have a greater impact on 
travel decisions (1). Road users may prefer a longer route over a shorter route if their travel time 
on the longer route is more reliable. In other words, people are willing to accept longer travel times 
if they can be assured that they will usually arrive on time (5). Congestion is a concern to the 
urban community who depend on the reliability of goods and services, and congestion is related 
to personal and community wellbeing within the urban environment (1). 
 
Detailed road network congestion information would be beneficial for both transportation 
professionals and the population at large. Recently, advances in technology and management 
practices have “increased [the] need for very accurate road traffic information” (6) and have 
assisted in the development of traffic sensors, including radar, magnetic, and video-based 
devices. However, because congestion “is a dynamic phenomenon with elements of both space 
and time” (1), it is a promising application of probe vehicle data. Probe vehicles act “as moving 
sensors, continuously feeding information about traffic conditions” (6) through continuous 
instrumentation and tracking (3). Probe vehicles allow for a precise measurement of origin-
destination (or route) travel time for a vehicle operating within normal traffic (3). Although several 
methods for instrumenting vehicles exist, GPS data, collected either by dedicated devices or 
GPS-enabled smartphones, is a reliable source (7). While probe vehicle studies have traditionally 
been limited in driver sample size and spatio-temporal coverage due to the labour cost associated 
with operating probe vehicles (2), the proliferation of GPS-enabled smartphones has the potential 
to increase the number of drivers sampled, increase temporal coverage to several weeks or 
months, and increase the spatial coverage to include the entire road network.  
 
Although GPS probe vehicles have been successfully implemented in freeway environments (8), 
specific consideration for urban environments is required due to the more variable and interrupted 
traffic flows caused by signalization or geometry (2). Tall buildings in urban centers can 
completely block GPS signals or create spurious signals through multipathing (1). These issues 
translate into inaccuracies of the GPS locations with respect to the road network which must be 
corrected through map-matching. The low frequency or inconsistency of GPS trip data in some 
links in the network, particularly in the off peak hours, is due to the low penetration rate of the 
smartphone application. Another issue is how to represent congestion variability across time and 
space and choosing the most appropriate measures of congestion. Finally, as the application 
provides large volume of data, methods for automating data analysis and processing are required. 
Despite increasing congestion levels, smartphone-based systems for measuring and monitoring 
traffic congestion are still rare in North American cities (9). The purpose of this paper is to present 
a methodology for computing congestion measures (accounting for spatial and temporal 
variations of travel time) using GPS data from regular drivers collected through a smartphone 
application. The three primary objectives are; to process network-wide GPS travel data collected; 
to quantify congestion on the network scale using the Congestion Index (CI); and, to observe and 
quantify the hourly propagation and daily variability of congestion. 



 

4 
 

LITERATURE REVIEW 
 
Several methods for estimating road traffic state (travel time or congestion) have been explored 
in the existing literature, and depend predominantly on the type of data that is collected. Using 
fixed point traffic sensors, the naïve method uses average speeds at a specific point that, when 
combined with flow, density, and speed relationships, is used estimate traffic conditions (10). The 
naïve method has been criticized for systematic bias (11) as detector data “only reflect conditions 
averaged over a fixed time period at a single point in space” whereas link travel time “reflects 
traffic conditions averaged over a fixed distance and a variable amount of time” (12). In trajectory 
methods, trajectories of simulated vehicles are constructed based on traffic data observed by 
several consecutive fixed sensors (13). van Lint and van der Zijpp (13) improved traditional 
methods by assuming linear speed variation (rather than piecewise-constant variation), which 
more accurately represents spatially and temporally dependent variation in flow. Coifman (12) 
constructed trajectories based on several loop detectors speeds to estimate travel time in a 
freeway environment, demonstrating that estimated travel times were within 10% of actual travel 
times on average. Liu and Ma (2) fused loop data with signal phase information in urban corridors 
to estimate travel times generally within 5% of actual. As with the naïve method, trajectory 
methods are limited because data is collected from a single point in space, and “changes in the 
traffic stream may be overrepresented or underrepresented” (12). 
 
Vehicle reidentification (VRI) is “the process of matching vehicles from one point on the roadway 
(one field of view) to the next” (14) based on a ‘reproducible feature’ or vehicle signature (15). 
When a vehicle is identified at two locations within the network, the travel time between those 
locations is determined. Vehicle signatures may be captured using license plate recognition (16) 
or media access control addresses captured from Bluetooth devices within passing vehicles (17), 
though most Bluetooth detectors have a detection rate of 5% or less (18). Vehicle length (19) and 
magnetic signature (20) have also been used to define vehicle signature, as presented by 
Coifman and Cassidy (19) who were able to reidentify 20% of vehicles based on length and Sun 
et al. (14) who used inductive loops and feature-based colour extracted from video stills to achieve 
an approximately 90% match rate. Kwong et al. (20) presented a system for VRI based on 
permanent wireless magnetic sensors installed along an urban corridor, spanning several 
intersections. The authors estimate a successful matching rate of 65-75% (20). 
 
Due to the issues and assumptions associated with the above techniques, probe vehicles have 
become a popular method for measuring traffic conditions (8). Continuous tracking over time and 
space represents a substantial improvement over methods of travel time estimation using fixed 
sensors. Initial work by D’Este, Zito, and Taylor (1) explored the feasibility of using GPS to collect 
traffic data and concluded that GPS was “a relatively cheap, efficient and effective means” of 
collecting traffic data. Techniques for estimating travel time vary depending on the number of 
probe vehicles utilized. The traditional approach uses the average travel time from a relatively 
large number of probe vehicles operating within the same time and space. However, the number 
of probe vehicles is dependent on traffic flow, and the labour requirement associated with a large 
number of probe vehicles is high (9). Due to these limitations, approaches have been developed 
to use relatively fewer probe vehicles with statistical adjustments to extrapolate probe vehicle 
travel time to mean travel time (21). Li and McDonald (3) proposed an approach using only a 
single probe vehicle, using the driving pattern of the probe vehicle to estimate the difference 
between the probe vehicle and average traffic conditions (3). Smartphone-collected GPS data 
enables the use of a large number of probe vehicles without the high labour costs associated with 
traditional instrumentation, and data coming from regular drivers may better represent typical 
traffic conditions. These benefits were demonstrated in an earlier study by Stipancic, Miranda-
Moreno, and Saunier (22). 
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Measures of congestion are typically based on either travel time or speed (23). Congestion may 
be measured by a change in travel time (24) from a baseline or expected travel time measurement 
(12). Measures like travel time index (TTI)  use the ratio of peak travel time to off-peak travel time 
to determine congestion at the link level (25). TTI and similar techniques can incorporate historical 
trend data to separate recurring and non-recurring congestion (12). Skabardonis, Varaiya, and 
Petty (26) utilized a delay-based approach to separate recurrent from non-recurrent delay. Delay 
can be measured by comparing the average speed to a free flow speed, where a reduction in 
speed introduces delay. In Washington State, mean speeds 75% of free flow speed are 
considered to signify the onset of congestion (25). The Congestion Index (CI) was proposed by 
Dias et al. (27) as a ratio of actual speed to free flow speed. With GPS probe vehicles, congestion 
measures based on speed are preferred. Travel time estimation may be influenced by errors in 
the reported GPS coordinates and on assumptions of the start and end of trip (or link). Considering 
the relatively recent advent of GPS data in transportation research, several shortcomings remain 
in the literature. Few studies have considered the rich source of data available from GPS-enabled 
smartphones. Congestion studies using probe vehicles have primarily focussed on the corridor-
level without consideration for estimating travel time or congestion at the network level. Despite 
successful probe vehicle studies in freeways, additional focus on urban roadways is required. 
 
METHODOLOGY 
 
Data Structure 
 
GPS data from the smartphones of regular drivers contains observations describing the entirety 
of their trip both across time and across the road network. For each trip, 𝑖, logged into a 

smartphone application, GPS travel data is returned as a series of observations, 𝑂𝑖𝑡, such as 
 

𝑡𝑟𝑖𝑝𝑖 =

{
 
 

 
 
𝑂𝑖0
𝑂𝑖1
⋮
𝑂𝑖𝑡
⋮
𝑂𝑖𝑛}

 
 

 
 

=

{
 
 

 
 
𝑖,  𝑐𝑖0,  𝑑𝑡𝑖0,  𝑥𝑖0 ,  𝑦𝑖0,  𝑧𝑖0,  𝑣𝑖0
𝑖,  𝑐𝑖1,  𝑑𝑡𝑖1,  𝑥𝑖1 ,  𝑦𝑖1,  𝑧𝑖1,  𝑣𝑖1

⋮
𝑖,  𝑐𝑖𝑡 ,  𝑑𝑡𝑖𝑡 ,  𝑥𝑖𝑡 ,  𝑦𝑖𝑡 ,  𝑧𝑖𝑡 ,  𝑣𝑖𝑡

⋮
 𝑖,  𝑐𝑖𝑛 ,  𝑑𝑡𝑖𝑛 ,  𝑥𝑖𝑛 ,  𝑦𝑖𝑛 ,  𝑧𝑖𝑛 ,  𝑣𝑖𝑛}

 
 

 
 

 

 

where 𝑖 is a unique trip identifier, 𝑂𝑖𝑡 is the an observation in trip 𝑖 at time 𝑡,  𝑐𝑖𝑡 is a unique 
coordinate identifier, 𝑑𝑡𝑖𝑡 is the datetime, 𝑥𝑖𝑡, 𝑦𝑖𝑡, and 𝑧𝑖𝑡 are the latitude, longitude, and altitude, 
and 𝑣𝑖𝑡 is the speed. From each trip, several key pieces of trip information include the origin 

(𝑥𝑖0, 𝑦𝑖0) and destination (𝑥𝑖𝑛, 𝑦𝑖𝑛) and start (𝑑𝑡𝑖0) and end times (𝑑𝑡𝑖𝑛). Total travel time can also 
be computed (𝑑𝑡𝑖𝑛 − 𝑑𝑡𝑖0). The time between consecutive observations, Δ𝑡, is typically between 
1 and 2 seconds. Depending on the application used to collect the data, socio-demographic 
information may also be available. Once a trip has been collected and reported by the user, initial 
pre-processing of the data using methods including Kalman filtering (28) to reduce variability are 
typical. The data is then stored in a database from which observations are exported for analysis. 
 
Map Matching 
 
Although the raw GPS data from a smartphone application is rich in spatio-temporal data, position 
is provided only in terms of latitude and longitude and is not linked spatially to the road network. 
Additionally, location variability is expected in the raw data. If the goal is to determine congestion 
at the link level, then it is necessary to explicitly match each trip to the travelled network links. 
This process, known as ‘map matching’ ensures that traffic conditions extracted from the trip data 
are correctly assigned to the links in which the traffic conditions are occurring. TrackMatching is 
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a commercially available, cloud-based web map-matching software service (29) that matches 
GPS trip data to the OpenStreetMap (OSM) road network (30). Before GPS data is sent to 
TrackMatching, the data is into individual trips and formatted according to the software input 
requirements, including only the coordinate ID, timestamp, latitude, and longitude for each 
observation. The software returns a new latitude and longitude, 𝑥𝑖𝑡

′  and 𝑦𝑖𝑡
′ , which correspond to 

a specific OSM link ID, 𝑙𝑖𝑡, as shown below. 
 

{𝑐𝑖𝑡 ,  𝑑𝑡𝑖𝑡 ,  𝑥𝑖𝑡 ,  𝑦𝑖𝑡} → TrackMatching → {𝑐𝑖𝑡 ,  𝑑𝑡𝑖𝑡 ,  𝑥𝑖𝑡
′ ,  𝑦𝑖𝑡

′ ,  𝑙𝑖𝑡 ,  𝑠𝑖𝑡 ,  𝑑𝑖𝑡} 
 
𝑥𝑡
′ and 𝑦𝑡

′ are chosen based on the Euclidean distance from the raw GPS points to the nearest 

link and on network topology (31). Track Matching also returns the source, 𝑠𝑖𝑡, and destination 
nodes, 𝑑𝑖𝑡, which can be used to identify direction of travel along the link. The algorithm generates 
a set of candidate paths and assigns the trip to the most probable path from origin to destination. 
After map-matching is completed, each observation corresponds to an exact location within the 
road network, and the series of links can be used to define the route from origin to destination. 
However, because important information including speed and datetime is lost d map matching 
process, the results are merged back with the original data to preserve the complete data set as 
shown below. The processes of data collection and map matching are illustrated in Figure 1. 
 

𝑡𝑟𝑖𝑝𝑖 =

{
 
 

 
 
𝑖,  𝑐𝑖0,  𝑑𝑡𝑖0,  𝑥𝑖1

′ ,  𝑦𝑖0
′ ,  𝑧𝑖0,  𝑣𝑖0,  𝑙𝑖0,  𝑠𝑖0,  𝑑𝑖0

𝑖,  𝑐𝑖1,  𝑑𝑡𝑖1,  𝑥𝑖1
′ ,  𝑦𝑖1

′ ,  𝑧𝑖1,  𝑣𝑖1,  𝑙𝑖1,  𝑠𝑖1,  𝑑𝑖1
⋮

𝑖,  𝑐𝑖𝑡 ,  𝑑𝑡𝑖𝑡 ,  𝑥𝑖𝑡
′ ,  𝑦𝑖𝑡

′ ,  𝑧𝑖𝑡 ,  𝑣𝑖𝑡 ,  𝑙𝑖𝑡 ,  𝑠𝑖𝑡 ,  𝑑𝑖𝑡
⋮

 𝑖,  𝑐𝑖𝑛 ,  𝑑𝑡𝑖𝑛,  𝑥𝑖𝑛
′ ,  𝑦𝑖𝑛

′ ,  𝑧𝑖𝑛 ,  𝑣𝑖𝑛 ,  𝑙𝑖𝑛 ,  𝑠𝑖𝑛 ,  𝑑𝑖𝑛}
 
 

 
 

 

 

Network Definition 
 
Although the map-matching procedure links each observation to the road network, the use of the 
OSM network in the TrackMatching algorithm presents a challenge. Ideally, links in the road 
network would connect two nodes at adjacent intersections. However, because the OSM road 
network is generated ad-hoc by users, a single link may connect several consecutive 
intersections. In urban centers, intersection design and operation can significantly impact 
congestion levels on consecutive links. It is desired to redefine the network such that each link is 
properly defined between adjacent intersections. Redefining the network requires several steps, 
which can be completed in any GIS software environment. The process is as follows: 
 

1. Identify all nodes that represent an intersection in the road network. In doing so, nodes 
that only define network topology are ignored. 

2. Split the road network at the identified nodes. Any links connected more than two 
intersections are broken into several smaller links. Links already properly defined are 
unchanged. 

3. Rename each link according to its original ID and the nodes on either end of the link. Step 
2 leaves several links with the same ID. In order for each link to have a unique identifier, 
the nodes on either end of the link are used to provide a unique ID. 

4. Remap the GPS observations to the new network. Travelled links in the GPS trip data are 
renamed using the same scheme as the mapping data, by concatenating the link ID, 
source node, and destination node into a unique identifier. 

  
The results of this process are shown in Figure 2. 
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Computing Congestion Index 
 
The map matching procedure enables congestion measurement for every link containing 
sufficient GPS data, providing either a microscopic view of link performance, or a macroscopic 
view of network performance. As discussed, several measures of congestion based on travel time 
have been proposed. However, because link travel time is dependent on position, and because 
the precise latitude and longitude are untrustworthy (and are in fact removed as part of the map 
matching procedure), a congestion measure based on speed (which is directly available from the 
GPS data) is preferred. Dias et al. (27) proposed the Congestion Index (CI) as one speed-based 
congestion measure, calculated as  
 

 
𝐶𝐼 =

free flow speed− actual speed

free flow speed
          if 𝐶𝐼 > 0 

= 0                                                                    if 𝐶𝐼 ≤ 0 

(1) 

 
This formulation yields CI values ranging between 0 and 1, where 0 is completely uncongested 
and 1 is completely congested. The first necessary step is calculating the free flow speed on each 

link, 𝐿. Free flow speed has been defined in numerous ways, though as congestion is generally 
constrained to the AM and PM peak periods, the speeds observed outside of these times can be 
used to estimate the free flow speed. For the purpose of this project, the morning peak period 
was defined as 6:00 to 10:00 AM, and the evening peak from 3:00 to 7:00 PM. The off-peak time, 
𝑇𝑜𝑓𝑓, includes all times outside of these peak periods. Free flow speed on a given link, 𝐿, is 

calculated as the average of all observed speeds on 𝐿 during 𝑇𝑜𝑓𝑓, or 

 

 𝐹𝐹𝑆𝐿 =
∑ ∑ 𝑣𝑖𝑡𝑡𝑖

𝑁
    if 𝑙𝑖𝑡 = 𝐿 and 𝑡 ∈ 𝑇𝑜𝑓𝑓 (2) 

 
where 𝑣𝑖𝑡 is the speed for every observation on link 𝐿 during  𝑇𝑜𝑓𝑓, and 𝑁 is the count of those 

observations. Next, the congestion index for every observation can be computed according to 
 

 
𝐶𝐼𝑖𝑡 =

𝐹𝐹𝑆𝑙𝑖𝑡 − 𝑣𝑖𝑡 

𝐹𝐹𝑆𝑙𝑖𝑡
       if 𝐶𝐼𝑖𝑡 > 0 

= 0                              if 𝐶𝐼𝑖𝑡 ≤ 0 

(3) 

 
where 𝐶𝐼𝑖𝑡 is the congestion index for observation 𝑂𝑖𝑡, 𝐹𝐹𝑆𝑙𝑖𝑡 is the free flow speed on link 𝑙𝑖𝑡, and 

𝑣𝑖𝑡 is the observed speed. As congestion levels vary across both distance and time, it is not only 
necessary to calculate CI at the link level, but also to calculate CI at different time intervals. The 
peak periods were divided into 60 minute time periods (one per hour) resulting in 8 total time 

periods. Therefore, the congestion index for link 𝐿 during time period 𝑇 is calculated as: 
 

 𝐶𝐼𝐿𝑇 =
∑ ∑ 𝐶𝐼𝑖𝑡𝑡𝑖

𝑁
   if 𝑙𝑖𝑡 = 𝐿 and 𝑡 ∈ 𝑇 (4) 

 

where 𝐶𝐼𝑖𝑡 is the congestion index for every observation on link 𝐿 during a time period 𝑇, and 𝑁 is 
the count of those observations. To minimize noise, filters were used to set minimum acceptable 

numbers of trips and observations for CI calculation. For a valid 𝐶𝐼𝐿𝑇, 𝐿 must contain at least 2 
trips during time 𝑇, and each of those trips must have at least 2 observations falling on link 𝐿. 
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Data Analysis 
 
The final methodological step is to analyze the CI data and report useful metrics. Most simply, it 
is possible to visualize CI at the link level for any given time interval on any given day using GIS 
software. Although this type of analysis can certainly shed light on a particular instant in time, a 
single snapshot of the network, or even several snapshots of the network, are not able to provide 
general insight or conclusions which would be beneficial to transportation professionals or to the 
driving public. Because congestion levels vary significantly throughout the day (due to variation 
in demand) and vary significantly between days (due to variation in demand, non-recurrent 
incidents, and random variation), it is necessary to quantify and/or visualize that variation, as well 
as the overall magnitude of congestion. 
 
The first objective was to view the hourly propagation of congestion at the macroscopic scale, for 
the network as a whole (in general, the hourly variation could also be determined for a specific 
corridor or link). Congestion does not occur all at once. Instead, it gradually builds and then 
subsides throughout the peak periods. Similarly, congestion does not occur across all network 
links simultaneously. In fact, congestion is generated at specific locations in the network at 
specific times (as trips are generated) and then propagates through the network over time (as 
those generated trips move from origin to destination). In largely monocentric cities, it is intuitive 
that the onset of congestion would begin furthest from the city center (where most residents live) 
earliest in the AM peak period. As time progresses, this congestion generated at the city outskirts 
should propagate towards the city center (where most residents work). Showing the progression 
of congestion at the network scale would provide insight into how the network behaves in general. 
In order to do this, links are binned according to distanced from the city center in 1 km increments. 

Data from all available weekdays is pooled, and 𝐶𝐼𝐿𝑇 is computed for each link and each time 
interval. The average CI within in each distance bin is calculated and plotted. Trend lines are fit, 
and observations are made based on the macroscopic congestion patterns across the network. 
 
The second objective was to observe the daily variation in traffic congestion at the microscopic, 
or link level. A detailed understanding of congestion should include not only the average level of 
congestion for a given link, but should also include a measure of how variable that level of 
congestion is from day to day. As road users may prefer routes with longer yet consistent travel 
times, targeting congestion variability may be as important as targeting overall congestion levels. 

To compute both mean CI and variance in CI, a single hour is chosen for analysis. One 𝐶𝐼𝐿𝑇 value 
is then computed for every available weekday of data for every link. If enough daily observations 
exist, the mean and variance of 𝐶𝐼𝐿𝑇 are computed. Maps can be generated which simultaneously 
show mean congestion levels (by colour) and variance in congestion (by line thickness). This type 
of map represents a substantial improvement over a single snapshot by considering temporal 
(daily) variation in the level of congestion. The most problematic locations in the network can then 
be observed as those locations with consistently high CI, and highly variable CI. 
 
DATA DESCRIPTION 
 
GPS travel data was collected in Quebec City, Canada using the Mon Trajet application (32) 
developed by BriskSynergies(33) . Screenshots from the application are shown in Figure 3. The 
application, which is available for Apple and Android devices, was installed voluntarily by drivers 
and allowed them to anonymously log trips into the application. As part of the system developed 
by BriskSynegies, data is automatically uploaded and stored in a cloud-based platform. In total, 
approximately 5000 driver participants have logged nearly 50,000 trips using the application. 
Although this data can be retrieved directly from the platform, the data used in this study is a large 
sample of the open-source data made available by the City of Quebec. The sample for this study 
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contained 2413 drivers and 12,724 individual trips during the period between April 28 and May 
18, 2014. Over the 21 days sampled, 19.7 million individual data points were logged.  
 
RESULTS 
 
Data Processing and Visualization 
 
As stated previously, one substantial limitation is that CI can only be calculated for links that have 
enough data. Even though the collection campaign in Quebec City was large (almost 13,000 trips 
were logged through the application) there were no trips on most of the network links. This is 
especially true of residential links, where data was only available on streets where participants 
lived. Still, a majority of the major freeways, arterials, and collectors have decent data coverage. 
These facilities, in fact, are the ones where congestion is the greatest concern, and so meaningful 
analysis is possible despite the missing data on residential streets.  
 
Data was collected over three complete weeks, resulting in 15 total weekdays of data for analysis. 
Considering these weekdays in general, each day yields at least one CI measurement for 
between 2000 and 4000 links. Considering that the Quebec City network has over 50,000 links in 
total, the data represents about 6% of the network on an average day. For each time interval 
during the peak periods, there is between 250 and 1750 links for which CI is calculated. This 
represents between 0.5% and 3.5% of the total road network. As with the total number of expected 
trips, the total number of GPS trips logged varies with time, first growing to a maximum and then 
subsiding throughout the peak periods. If the data from all weekdays is pooled together, the 
results are improved significantly. At least one CI measurement exists for 16,805 links (or 34% of 
the total road network) and each hour contains between 6600 and 12,000 links with a valid CI 
(13-24% of the total). CI can be mapped and visualized using any GIS software. A CI map for 
May 6 between 8:00 and 9:00 AM is presented in Figure 4. 
 
Hourly Propagation 
 
In order to view hourly propagation of congestion, variation through both time and space must be 
considered. Each 4-hour peak period can be viewed as having an onset period (lasting one hour), 
the peak itself (lasting two hours), and a dissipation period (lasting one hour). Plots of CI and 
distance are provided in Figure 5 for both the AM and PM peak periods. As weekday data was 
pooled, the congestion profile for each hour is based on 13%-24% of the total links in the network. 
Starting with Figure 5a, the onset of congestion in the AM peak (6:00 to 7:00 AM) is characterized 
by relatively consistent CI levels across the network. Peaks in the profile during this time are 
related to those distances which contain major highways or arterials. From 6:00 AM to 7:00 AM, 
CI increases across all distances, although the increase is relatively greater as distance to the 
city center decreases (ranging from CI of 0.12 at the center to 0.08 at a distance of 20 km). Levels 
of congestion remain relatively consistent between 7:00 and 9:00 AM. During the dissipation 
period (9:00 to 10:00 AM) the relative profile is the same (with higher congestion in the city center), 
however, congestion far from the city center has returned levels at or below that of the onset 
period (CI is approximately 0.1 at the center, but 0.04 at a distance of 20 km). This shows that 
congestion at the outskirts of the city dissipates earlier than at the center. 
 
Results for the PM peak period, in Figure 5b, are essentially a ‘mirror image’ of the AM peak. At 
the onset of congestion (3:00 to 4:00 PM) congestion is relatively high in the city center, but is at 
or below the baseline CI during the dissipation period (6:00 to 7:00 PM) at the outskirts of the city. 
During the middle of the peak period (4:00 to 6:00 PM) congestion increases, and is highest in 
the city center (CI of about 0.13) and lowest at a distance of 20 km (CI of 0.8). During the 
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dissipation period, congestion is, on average, consistent with distance (although it increases 
slightly as distance increases) at a CI of between 0.06 and 0.07. 
 
Several general observations were made based on these plots. First, overall congestion levels 
are nearly equal between the AM and PM peak periods. The baseline CI (during the AM onset 
and PM dissipation periods) is generally consistent around 0.06, and the maximum CI at the city 
center was 0.12 in the AM and 0.14 in the PM. In general, CI varies much less at the outskirts 
than at the city center. In the AM peak, CI returns to or below onset levels during the dissipation 
period. In the PM, CI begins at or below dissipation levels during the onset period. These plots 
can help describe how congestion propagates from the outskirts to the city center in the morning, 
and back from the center to the outskirts in the evening. A simplified description of congestion 
formation and propagation is presented in Table 1. Obviously, this is an oversimplification of the 
congestion phenomena. However, the fact that the measure of CI, and the method of computing 
CI across the network using data from GPS enabled smartphones, is consistent with intuitive 
characteristics of congestion at the macroscopic level, is extremely promising. 

 
Daily Variation 
 
In order to understand daily variations in the level of congestion at the microscopic level, 𝐶𝐼𝐿𝑇, 
was computed for each link, during a single hour (8:00 to 9:00 AM) on each of the 15 weekdays 
of data. The mean and variance of 𝐶𝐼𝐿𝑇 were then computed. In totally, there were only 1019 links 
with enough data during the hour of analysis on all 15 days for which a mean and variance could 
be computed. It is suspected that some correlation exists between the mean and variance of CI, 
as it is unlikely that links with low levels of congestion would have much daily variation. In fact, for 
the 1019, there was a correlation of 0.60 between the variance and the mean. As stated earlier, 
it would be beneficial to target not only the most congested links or locations, but also to target 
the locations with the greatest variance in order to improve travel time reliability for the road user. 
The mean and variance of CI are mapped for the network in Figure 6, where the colour represents 
the mean CI, and the link thickness represents the variance in CI. Based only on this map, the 
most troublesome locations in the network can be determined visually. The most critical locations 
in the network include: 
 

• Southbound and eastbound ramps of the Autoroute Henri-IV/Autoroute Felix-Leclerc 

Interchange 

• Southbound and westbound ramps of the Autoroute Laurentienne/Autoroute Felix-Leclerc 

Interchange 

• Eastbound ramp of the Autoroute Henri-IV and Autoroute Duplessis Interchange 

• Eastbound direction of major downtown arterials including Grande Allee O, Boulevard 

Rene-Levesque O, Chemin Ste-Foy, and Boulevard Charest O 

 

These results are again consistent with intuition about congestion at the microscopic level. The 
most congested locations in the AM peak are the freeways, ramps, and arterials which bring traffic 
downtown, and these locations are identified by both the mean and variance in congestion level. 
 
CONCLUSIONS 
 
The purpose of this paper was to propose measures for representing congestion levels across 
time and space in an urban road network (Quebec City, Canada) using data collected from the 
GPS-enabled smartphones of regular drivers. This paper first presented the methodology for 
processing the GPS data and computing CI. Through map matching and network definition, 
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observations are explicitly related to properly defined links in the road network. The measure and 
method for evaluating congestion proved to be relatively easily to compute, and the data analysis 
showed that results were consistent with the expected behaviour of congestion at both the 
microscopic and macroscopic levels. Despite some limited spatio-temporal data coverage, 
enough data was available to calculate and visualize congestion for the majority of major 
freeways, arterials, and collectors within Quebec City.  
 
When considering hourly propagation of congestion during an average day, the results were 
consistent with intuitive understanding of how congestion builds and dissipates over time and how 
congestion propagates across distance between the outskirts of the city and the city center at the 
macroscopic scale. This analysis clearly showed how CI tends to be both greater and more 
variable as distance to the city center decreases. In both the AM and PM peak periods, links 
closest to the city center exhibited, on average, a CI of between 0.12 and 0.14, while links furthest 
from the city center had CI general below 0.09. Average baseline CI during the AM onset and PM 
dissipation periods were around 0.06 network wide. 
 
Daily average and variance in CI were computed for a single hour of analysis in the AM peak 
periods for each link in the network. Although many of the most congested links are also the most 
variable, the correlation between mean and variance of CI was only 0.06. In other words, there 
are highly congested links with less variability and more variable links with relatively low levels of 
congestion. Links with high congestion and low variability represent chronic problems in the 
network, while links with low congestion and high variability could point towards non-recurrent 
phenomena (collisions or construction) taking place over the data collection period. Not 
surprisingly, the most problematic areas were freeway interchanges and arterials which bring 
motorists east and south into the downtown area of Quebec City. This type of analysis is 
potentially beneficial in the prioritizing of sites for congestion remediation. Although it may be in 
the transportation professional’s interest to remediate the most congested locations, a greater 
benefit may be provided to motorists by targeting the sites with the most variability. 
 
Although the methodology and proof of concept were shown to be successful, several items are 
planned for future research. First, the OSM data is incomplete in some key areas of the network. 
This is again partially due to the ad-hoc nature of the OSM data. Methods for finding and 
completing the map itself are required to complete these key corridors. In terms of measuring 
congestion, although it is acceptable for some links to be without data (specifically residential 
streets without trip data to process), there are several isolated links in the network without data 
despite links before and after having data. Methods for filling in this missing data (based on both 
spatial correlation with other links and temporal correlation with other time periods) would provide 
a benefit for work in this area. Finally, a greater depth of analysis of the computed CI data is 
required if this type of work is to be applicable in practice for network planning or congestion 
remediation. Finally, a software platform for automating the entire  process can be built to make 
this an accessible and practical tool for city planners.  
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FIGURE 1  Collection and map matching of smartphone-collected GPS data 

 

 

 

FIGURE 2  Redefinition of OSM links 
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FIGURE 3  Smartphone application interfaces 

 

 

FIGURE 4  CI map for May 6 from 8:00 to 9:00 AM 
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(a) 

 
(b) 

FIGURE 5  Congestion profiles for each hour during AM (a) and PM peak periods (b) 
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FIGURE 6  Average and variance of CI on link basis 

 

TABLE 1  Description of macroscopic congestion formation and propagation in Quebec City 

AM PEAK 

Time Period Description 

6:00 to 7:00 AM Onset Trips begin to be generated at the outskirts, 
destined for downtown 

7:00 to 9:00 AM Peak Trips from the outskirts begin to arrive downtown, 
and more trips are generated throughout the 
network 

9:00 to 10:00 AM Dissipation Trips are no longer generated at the outskirts, but 
are still arriving and being generated downtown 

PM PEAK 

Time Period Description 

3:00 to 4:00 PM Onset Trips begin to be generated downtown, destined 
for the outskirts 

4:00 to 6:00 PM Peak Trips from downtown begin to arrive at the 
outskirts, and more trips are generated throughout 
the network 

 6:00 to 7:00 PM Dissipation Trips are no longer generated downtown, but are 
still arriving at the outskirts 

 
 


