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1  ABSTRACT 

Recent watershed advancements in computer vision and machine learning has allowed for the 
possibility of classifying traffic characteristics from camera image data in real time. Information 
from traffic images can supplement data from other sensors such as loop detectors, Bluetooth 
and WiFi sensors and Dedicated Short Range communications (DSRC) roadside units. In this paper, 
we propose a method for near real-time estimation of traffic state variables such as volume and 
speed, in locations where traffic cameras exist. The proposed system allows municipalities and 
provinces to extend the utility of their existing camera systems with minimal additional resources. 
In this paper, we specifically explore the application of convolutional neural networks (CNN) to 
traffic image processing. We use existing loop detector data from Toronto highways as the ground 
truth to train and test the CNN to infer the macroscopic traffic flow characteristics of speed and 
flow from the still images. Preprocessing using temporal median stacking and image subtraction 
was first done to identify cars in lanes.  The model was then trained, using ground truth data from 
loop detectors, to estimate traffic speed and volume directly from the images for all vehicle types. 
The proposed model generates promising results, with up to 88.6 percent accuracy, depending 
on the bin size. 

 

Keywords: CNN, Deep Learning, Traffic Detection and Estimation, Density, Traffic Monitoring, 
Traffic Cameras, Big Data, Articial Intelligence, Data-Driven Model, Traffic Flow. 
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2  INTRODUCTION 

The proliferation of big data has seen its applications to traffic monitoring and control. Research 
has demonstrated the possibility of real-time traffic detection and estimation using both image 
and video analytrics(1)(2)(3). Existing methods for image classification, however, are graphics 
intensive and computationally expensive which may make it difficult for many municipalities to 
apply to widely existing traffic cameras. There is work that attempts to integrate heterogeneous 
data sources, although they do not explicitly cross validate each other (3). Other than video data, 
there has also been work on the extraction of low-level features and traffic parameters, such as 
density, for both traffic and crowd control (4)(5)(6)(8). 
 
For traffic counting, loop detector data is generally considered more accurate than camera data 
(3). There is work in the area of comparing loop detector data to camera data; however, there is 
little precedent for correlating loop detector data with traffic camera data. An intensive literature 
analysis has not found any prior work in this area.  
 
The model presented in this paper provides added value to existing traffic monitoring tools by 
providing a tool to detect various traffic characteristics that were previously restricted to loop 
detectors, which are often unreliable; for instance, in this study, out of the 74 loop detectors that 
were used, only 48 were found to be producing acceptable data. In addition, loop detectors are 
costly to repair and its maintenance requires civil work and road closures, as replacing loop 
detectors involves replacing asphalt. Cameras are widely used for traffic monitoring, detection 
and even for security; as a result, there are billions of unlabelled images that a model can gather 
traffic data from. The proposed model has the ability to label these images automatically for 
future models that require more data points. 
 
In addition, this work will be used to classify traffic information on a macroscopic fundamental 
diagram (MFD). Traffic is either in the state of free flow, bound or congested, as shown in Figure 
1. The flow q is defined as:  

 q=ku0− 
k2u0

kj
 (1) 

where u0 is the speed of traffic at free-flow, k is the density, defined as vehicles per length and kj 

is the jam density, or the density in which the traffic is at a standstill. This follows a parabolic 
relationship that this model attempts to capture. 
 
We attempt to capture traffic flow characteristics, however, from a data-driven perspective. We 
hope to replicate some of the characteristics present in a mathematical approach, such as the 
parabolic relationship displayed in the MFD, through implicit relationships learned by the model.  
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FIGURE 1 Macroscopic Fundamental Diagram (10)  

3  METHODOLOGY 

  

FIGURE 2 Model Architecture and Data Sources 

We attempt to correlate data at different spatiotemporal scales; loop detectors provide 
microscopic data for individual vehicles, while camera images are captured every 3 minutes and 
do not possess low-level information. This paper attempts to reconcile the two regimes by 
processing loop detector data to determine the macroscopic properties of speed and flow. 

In order to match the data sources temporally, loop detector data was averaged in order to match 
the frequency of collection of camera data. The assumption was made that nearby loop detectors 
correspond to nearby cameras, as both the loop detectors and cameras operate on the highway. 
There is some difficulty in correlating both spatially, due to the lack of information regarding loop 
detector and camera directionality; this is an area of further work and is explored further in the 
conclusion. The main focus of this paper is to demonstrate the process of correlating data from 
disparate sources to make them consistent in the creation of a multimodal sensor network, where 
data is acquired from multiple sensors in order to construct a more robust model of traffic 
congestion. 
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3.1  Data Acquisition  

We acquired our training data through On511, an open data initiative that provides near-real time 
updates from traffic cameras across Ontario, Canada. For the sake of this study, only cameras in 
the Greater Toronto Area are considered, giving a total of 135 usable cameras. A Python script is 
used acquire the images and store them to a centralized relational database server. The images 
are updated every 3 minutes. Each image consists of a 704 × 480 × 3 tensor; the images have a 
resolution of 704 × 480, with 3 color channels.  

We attempt to match camera information with data from loop detectors obtained from the City 
of Toronto and the MTO to provide our validation set. Euclidean distances between traffic 
cameras and loop detectors are calculated, with the closest loop detector to a camera considered 
the corresponding loop detector. Only cameras with a loop detector closer than 250 metres to 
the camera is considered. Relevant features are extracted in the preprocessing step, including 
vehicle detection.   

3.1.1  Loop Detectors 

Raw loop detector data is collected from the City of Toronto and the Ministry of Transportation 
from 1323 loop detectors for the May of 2018. A processing script is used to take the raw data 
and process it into speed and occupancy information, updated every 20 seconds. Information 
from 1323 detectors was provided by the city.Out of the 1323 detectors, 361 detectors did not 
have a valid GPS coordinate attached after postprocessing. These detectors were discarded, as it 
would be difficult to correlate the detector with a camera without prior knowledge on detector 
location. 
 
To find the loop detectors that correspond to camera locations, we use Euclidean distances in 
order to correlate the two. A radius of 250m was used for this classification. Due to lack of 
information in the API call from On511, we were unable to correlate the direction of where the 
camera is facing with the loop detectors. The cameras are mounted on a swivel, which means 
that controllers could move the cameras at any time and the information on camera direction is 
not encoded. A radius of 250m was chosen; the number of cameras with a corresponding loop 
detector within a certain radius can be found in Table 2. 
 
Visual inspection has found some of the loop detectors to be defective; they were returning null 
or nonsensical values for the duration of their operation. Due to the faulty sensors, a checksum 
of traffic velocity for the first day as well as the first reading of each day in a given month is first 
calculated. Any irregularities is disregarded, and the data is not used. It was found that 48 
cameras had a corresponding loop detector. Out of the 48 cameras, 1 had an aspect ratio slightly 
different than the rest and was therefore resized and cropped. Another had an aspect ratio 
significantly different than the rest and was therefore discarded, leaving 47 cameras. Data 
imputation was considered, but was unsuitable for this application, as a sensor would have no 
viable data to impute (11) . 
 
To convert microscopic data from loop detectors to speed and occupancy, we define occupancy 
as  
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occupancy = 100 ⋅
∑ 𝑡𝑖

T
               (2) 

where ti  is the time there is a car over a detector, and T is the detection interval, which is 

windowed at 20s. The definition of speed is given as  

speed= 
1
N 

T

 vi         (3) 

where T is a window of 20 seconds, and N is the number of vehicles to pass over the detector at 
that given time.  
 
A window of speed and occupancy readings from the loop detector is taken from 5 minutes prior 
to 1 minute after each image in order to account for missing datapoints, using 
   

1

𝑛𝑟,𝑣𝑖𝑎𝑏𝑙𝑒
∑ 𝑟𝑖

1

i = −5,   𝑟𝑖≠0

 

 
to average out the reading and give a better overview. A nonzero reading is considered viable. 
 
Since there is no simple relationship between occupancy and density, due to heterogenous traffic 
flow and varying vehicle sizes (12) . However, given the highway regime, a homogenous flow is 
assumed, and vehicle sizes are assumed constant. Under this assumption, the equation simplifies 
to  

 occupancy=(l+d)k (5) 

 
where k is the flow, l is the car length and d is the width of the loop detector. Note that this differs 
from density by a constant; we then multiply this value by the speed of traffic u in order to 
approximate the traffic flow, given in units of %  coverage⋅hour/km. 

  

3.1.2  Camera Traffic Images 

 
Data was collected from May 25, 2018 to May 31, 2018. For camera data, we only consider images 
from 6:00AM to 8:00PM, as the quality of the cameras means that images are overexposed and 
washed-out in low light conditions outside this time range. A total of 43,499 images were 
collected this way. Speed and occupancy data from the loop detectors are gathered every minute, 
for a total of 130,497 records. We also use a binary threshold to disregard any images that had 
issues in pre-processing, which leaves us with 39,138 images. 

 
For data augmentation, the images are flipped horizontally as the traffic condition is expected to 
be invariant to road directionality. The preprocessing step sometimes has issues with changes in 
light intensity or changes in perspective due to camera swivel; this is filtered by counting the total 
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number of pixels and removing all images that exceed a certain threshold. A total of 78,276 
images are used for the training set after data augmentation.  

 

Table 1 : Number of images during different stage of data processing 

Stage of Processing # of Images 

Images in database 436629 

Images with loop detector 43499 

Images after thresholding 39138 

Images after augmentation 78276 

 
We matched the camera information with data from loop detectors obtained from the City of 
Toronto and the MTO to provide our validation set. Euclidean distances between traffic cameras 
and loop detectors are calculated, with the closest loop detector to a camera considered the 
corresponding loop detector. Only cameras with a loop detector closer than 250 metres to the 
camera is considered. Relevant features are extracted in the preprocessing step, including vehicle 
detection.   

 

Table 2 : Number of cameras with corresponding loop detector as a function of radius 

 

Threshold Radius (m) # of Cameras 

100 33 

150 61 

200 71 

250 74 

300 76 

500 79 

3.2  Preprocessing 

Procedure 1 Median Stacking Algorithm.  
 

1: procedure Median(fi) 

2: Load images fi−12 to fi+12 in greyscale 

3: fmedian← median value for all pixels from fi−12 to fi+12 

4: for images from fi−2 to fi+2 do 

5: fi←|pmedian−pi| for all pixels in image 

6: Binary threshold, smooth fi 

7: Downsample fi 

8: return fi 
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We first apply temporal median stacking and image subtraction in order to find cars as 
demonstrated in Procedure 1Error! Reference source not found.. A window is obtained to 
construct an image where every pixel is a median value as the ground, which is subtracted from 
the image of interest, thresholded and blurred in order to capture nonstationary objects from 
frame to frame. As this is a highway setting, all nonstationary objects are assumed to be vehicles. 
Various characteristics of the traffic cameras are exploited to develop a quick, accurate and 
scalable algorithm for car detection on stationary, low resolution highway cameras. This step is 
robust for faraway vehicles, as the model does not involve explicit vehicle classification. A similar 
motivation was explored in (7), with the exception that preprocessing was done through CNNs 
rather than temporal based median stacking, as the assumption of a fixed camera reference point 
cannot be made. 

 

FIGURE 3 Examples of problem cases. (a) shows a bridge over the highway, while (b) shows a 
prominent ramp, as well as a street running below the highway. (c) is an example where a main 
arterial blocks off significant amounts of the foreground.   

 
The motivation is merely to remove certain features from the training model; this image 
segmentation technique is to extract relevant features for the input to the model and not for car 
detection (8).    

4.  Model Framework 

We explore the use of a Convolutional Neural Network (CNN) in the classification of images. The 
preprocessed image serves as the input layer of Figure Error! Reference source not found.. ReLU 
activation is used for the activation functions; this is fairly standard for a CNN.  

 

Mean square error is used as the loss function, defined as  

1
n 

i

 (vi,pred,occ−vi,label,occ)2+(vi,pred,speed−vi,label,speed)2  (6) 

The two output neurons output floats for speed and occupancy, the two relevant features 
extracted from the training set. The activation for the final layer is a linear activation function, as 
floats are predicted. Softmax is not appropriate as this is not a classification problem. Speed and 
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density are normalized so the output neurons output values in a similar range, so the mean 
squared error does not ignore one characteristic over another. To calcuate the accuracy, the 
function below is 

1
n 

i

  
1
2 

|di,pred−di,loop|

|di,loop|+|di,pred|  (7) 

with independent accuracies for the 2 different predicted values are used. We do not use 
standard error, as the ground truth is occasionally zero; this would give an undefined standard 
error. As a result, we sum the predicted and labelled values, then divide by two. 
 
During the design process four different models were developed: Regular, shallow, deep and 
Regular with fiters. Table 3 below shows the defintion of different haypermeteres and 
configurations used for the models design. 
 

Table 3 Hyperparameter defintions 

Haypermeter Description 

Layers 
The number and description of each layer. Convolutional layers followed by 
fully connected layers. 

Filter Sizes 
The size of the filter in which the algorithm is applied to in each 
convolutional layer 

Stride How much the filter moves each time 

Neurons (Fully 
Connected) 

The amount of neurons in each fully connected layer 

Filter Amount How many filters in each convolution layer 

 

Figure 4 : Hyperparameter values for the Regular model design. 

 
In the original model, three convolutional layers are used, followed by 3 fully connected layers. 
The convolutional layers has 32, 64, and 64 filters, respectively, with filter sizes of 5x5, 5x5 and 
3x3. The images are zero-padded, with 2x2 max-pool after each convolutional layer. The output 
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is then flattened and connected to three fully connected layers with 512, 256 and 256 neurons, 
respectively.  

Several CNN variations were attempted in the classification of this task. In addition to the model 
currently in use, a shallower model with 2 fully connected layers and 2 convolutional layers were 
used. Different filter sizes were used as well; a third model uses filter sizes of 7x7, 5x5 and 3x3 
for the three convolutional layers, with the motivation that larger features should be recognized 
earlier in training. A 4th model uses the filter size modification, in addition to using 5 fully 
connected layers as opposed to 3, each additional layer with 256 neurons each. Table 4, shows 
the charatristics of the four developed models and its hyperparameter values 
 
  

Table 4 Hyperparameter values for different model configurations 

Item Layers Filter Sizes Stride 
Neurons (Fully 

Connected) 
Filter 

Amount 

Regular 
3 convolutional, 3 

fully connected 
5x5, 5x5, 3x3 2x2 512, 256, 256 32, 64, 64 

Shallow 
2 convolutional, 2 

fully connected 
5x5, 3x3 2x2 512, 256 32, 64 

Deep 
3 convolutional, 5 

fully connected 
7x7, 5x5, 3x3 2x2 

512, 256, 256, 
256 

32, 64, 64 

Filter 
3 convolutional, 3 

fully connected 
7x7, 5x5, 3x3 2x2 512, 256, 256 32, 64, 64 

 
 
Since the decision was made to use a CNN, as the classification is image-based, the constraints 
on training resources means that a larger model would take significant amounts of time to train.In 
addition, image preprocessing yielded a distinctive texture as can be seen o Figure Error! 
Reference source not found. (a) for at-capacity or (d) for free-flow; it is hoped that the CNN will 
be able to implicitly perform blob classification based on the image as shown in Figure 6. 
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FIGURE 5 Car detection at different regimes. (a): Congestion (Speed = 26km/hr, Occupancy = 
39%) – (b): Bound flow (Speed = 87km/hr, Occupancy = 10%) (c): Free flow (Speed = 97km/hr, 
Occupancy = 3% 

  

FIGURE 6 Before and after images for several traffic situtation. 

5 RESULTS 

5.1 The Computing Environment  

The model is trained on a Nvidia GTX 950M, with a train time of approximately 5 minutes. 65,000 
images were in the training set while 13,248 were used in the validation set. The size of the 
validation set stems from the rate of convergence of the loss function; the loss appeared to 
decrease throughout the training process; future work could be done to train the network on a 
larger corpus of data. The amount of neurons were decided largely in part by the amount of 
available memory in the network; training took place using 8GB of memory, and storing a larger 
model would require access to a more powerful machine.  

5.2 Model Performance   

5.2.1 Loss Function 

The training demonstrated a loss function that followed a downward trend. However, due to the 
definitions of the loss and accuracy functions, predictions as given in Figure 7 and Figure 10 are 
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dependent on the closeness of the float values. This means that the loss and accuracy functions 
can fluctuate significantly based on one wrong prediction in a batch. This can be seen in the high 
variability of accuracy in each batch. Figure 7 below shows the lost function for the four model 
design alternatives. 

 

 
FIGURE 7 Loss performance metrics for 4 models. Top left: Regular Model. Top right: Shallow 
model. Bottom Left: Model with altered filters. Bottom Right: Deeper model with 5 fully 
connected layers and altered filters. 
 

5.2.2 Accuracy  

Due to the nature of that this task, the confusion matrix is generated based on bin sizes. Unlike a 
classification task, even if the prediction lies outside the ground truth, there is still some 
usefulness of the result if the results lie in an adjacent bin; In the confusion matrix shown in Figure 
8, for occupancy, for example, a prediction of an occupancy of 31% coverage would be considered 
a misclassification if the ground truth is 29% coverage, based on how the bins are arranged. A list 
of accuracies in relation to different bin sizes are presented in Table 4. 
 

Table 4: Model Accuracy based on different bin size 

Bin Size (% Coverage) Accuracy (%) 
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2.5 23.6 

5 41.1 

7.5 54.8 

10 72.4 

12.5 83.0 

15 88.6 

 

5.2.3 Model comparisons 

The metric for classifying these CNNs is the Level of Service (LOS) index, an idea that segments 
density into different levels. The LOS values have been modified from veh/km/lane to percent 
coverage due to the lack of information regarding the number of lanes, as well as assumption of 
correlation between percent coverage and density. Due to the fact that the accuracy is dependent 
on bin size as described above, we adapted the LOS metric, which is then used to determine the 
most suitable architecture. The models all have similar classifications, with the exception of the 
deep model, which had significantly worse classification accuracy for LOS levels III and IV.  

Confusion matrices for the 13,248 images in the validation set were generated.Note that the 
inputs and outputs are floats; this means that a typical confusion matrix for classification will 
not work, and therefore an adapted confusion matrix must be used, where values are binned. 
The network outputs a fairly accurate prediction for values in this range. 

It can be seen that all models have the most trouble classifying LOS levels between II and III, and 
perform better for LOS levels of I and IV. This would make sense, as flow characteristics for a 
medium amount of traffic is expected to be harder to distinguish visually compared to both 
extremes. There is a strong tendency to classify LOS level II as I and LOS level III as II or IV, which 
may suggest visual similarity or lack of training data for these classes. The results are presented 
in Figure 8. 
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FIGURE 8 LOS confusion matrices for alternative models. Top left: Original Model. Top right: 
Shallow model. Bottom Left: Model with altered filters. Bottom Right: Deeper model with 5 fully 
connected layers and altered filters. 

 5.2.4 Issues  

We attempt to determine different flow regimes based on speed and occupancy data. Speed 
and occupancy information is found using the associated loop detector values for each image; a 
total of 35,000 points were collected. Due to the low dimensionality, trends can be seen through 
inspection. More advanced clustering methods are not required.  

 

  

FIGURE 9 Plot of speed vs flow for ground truth (left) vs the predicted value (right). 

The model shows a trend between speed and occupancy, although it does not appear to predict 

a decreased occupancy for the congested regime. In addition, it can be seen that the model does 

not predict the long tail where the occupancy stays constant from speeds of 100 to 140km/h - 

this is to be expected, as there is no significant visual difference between free-flow traffic at 

100km/h as opposed to 140km/h. 
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FIGURE 10 Accuracy. (b) Accuracy - Occupancy (c) Accuracy – Speed 

 
The above results show that the model requires further improvements with classifying traffic in 
the high-occupancy regime. Figure 11 is a good example of a batch with a high number of 
reference pictures with a high occupancy; it can be seen that the model consistently predicts a 
higher occupancy for the images with a high occupancy, but falls short. This is likely due to the 
imbalance of images with low congestion and images with high congestion, as can be seen in 
Figure 6. It is worthy mentioioning that the loop detector sometimes fails to detect the speed and 
consequently outputs a abnormally low speed; this is more of a consequence of faulty loop 
sensors in the training data.  
 
As a result, the error sometimes increases, if the batch has a high number of images with a high 
occupancy rate, this could increase the batch relative error. This could be rectified by adding more 
training images with a high occupancy to address the class imbalance, for future improvements 
to the model. Further misclassification could be attributed to failures on the part of the vehicle 
segmentation algorithm, which fails for times of day with rapidly changing lighting conditions. 
Shadows are not accounted for by the algorithm and could negatively affect classification. Some 
failure cases are shown in Figure10. Further work will be done to identify and remove shadows.  
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FIGURE 11 Failure cases for segmentation algorithm. (a) A low sun angle causes shadows to be 
binarized in the segmentation algorithm. (b, d) A low sun angle changes the light reflected by 
reflective surfaces, such as concrete and lane markings, quickly. (c) Grass textures are not 
properly segmented. A low sun angle causes the asphalt itself to become reflective at certain 
times of day. 

  

  

FIGURE 12 Some examples of predicted vs. actual results. (a) demonstrates misclassification in 
the congested regime; there is a bias towards higher occupancy predictions, but the model often 
underestimates occupancy. (b) demonstrates a typical case for occupancy prediction, while the 
right (c) is a typical case for speed prediction. Notice the tendency for misclassification for slow 
flowing traffic. 

 

 6.0 CONCLUSION 

We have developed a model for the classification of traffic characteristics based on traffic images, 
with the ground truth being values outputted by the loop detectors. This model shows some 
promise for the classification of traffic in the high and low occupancy regimes, although it 
struggles with classification in between the two regimes. According to the LOS metric defined in 
6, the model has higher classification accuracy for LOS levels I and IV, with a wider spread at LOS 
levels II and III. Some parameters, such as accuracy and loss, were not as indicative of model 
accuracy, as the model is not doing classification work, and a predicted float that varies 
significantly from the labelled float can heavily skew these metrics.  

 

This model has the ability to determine traffic characteristics using existing infrastructure that is 
in place, such as the Greater Toronto Area (GTA). This adds value by giving cities an alternative 
tool for congestion monitoring essentially for free, and can be an added feature in any traffic 
classification tasks using an ensemble approach. An approach similar to our confusion matrices 
generated for our modified LOS index could be used, with traffic flow binned at 15% road 
coverage; this bin size is reasonable for implementing a control system for traffic monitoring; 
having too high of a sensitivity would lead to instabilities caused by fluctuations by the control 
system, be it ramp metering or VACs technologies. 



  

2019 TAC-ITS Canada Joint Conference & Exhibition – Halifax NS 

17 

 
Low-level preprocessing of lane detection could be useful for supplementing another set of 
features that is unused by the network; directional segmentation would result in the ability to 
match cameras with the appropriate loop detector, as opposed to simply observing the state of 
traffic on a given road link (4). This would further improve our model. The principal emphasis 
areas remain theory and modelling of traffic flow interactions in a connected and automated 
system and the supporting data collection and mining efforts needed for calibration and 
validation purposes.  
 
Better training data with lane labelling and directionality identification is expected to improve 
performance of this model. Due to the threshold method used, shadow detection and reduction 
is not implemented. This poses as an issue for low sun angles, as the shadow is not factored in by 
the preprocessing. The training data provided is limited to between 7am and 8pm to prevent 
shadows from posing a significant issue.  
 
Future work will be done in detecting bridges, lanes and other features that help determine the 
region of interest, as opposed to the entire image; this will then be able to differentiate between 
different directions, as well as differentiate between the road of interest and surrounding roads, 
ramps and bridges. In addition, work will be done for bidirectional direction, where the loop 
detectors will be correlate with the appropriate direction, as well as the appropriate lanes.  
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