A SYSTEMATIC APPROACH TO THE PLANNING OF A REGION-WIDE RWIS NETWORK

Tae J. Kwon1, Liping Fu1, and Max S. Perchanok2
1Department of Civil & Environmental Engineering, University of Alberta, 2Department of Civil & Environmental Engineering, University of Waterloo. 3Ontario Ministry of Transportation.

Introduction

BACKGROUND
Effective winter road maintenance (WRM) is indispensable in countries with severe winter weather events, which could cause significant increases in road collisions and traffic delay. To promote safer and more efficient driving conditions, many transportation authorities expend more than $3 billion annually on winter road maintenance, such as plowing and salting.

One possible approach to improve the decision-making process of WRM operations is to utilize Road Weather Information System.

DESCRIPTION OF RWIS
Road weather information systems (RWIS) provide information on current and near future road weather conditions based on the data gathered at RWIS stations.

BENEFITS OF RWIS
Collective use of information from individual RWIS stations

RESEARCH MOTIVATIONS and OBJECTIVE
- Transportation agencies are challenged by the high installation and operational costs of RWIS
- Existing methods do not account for the trade-off between multiple location optimization criteria, and the ultimate use of RWIS information
- The objective is to develop a systematic framework to optimize the spatial design of a regional RWIS network.

Methodology

THE IDEA – KRIGING FOR SPATIAL INFERENCE

The Basic Premise
- Kriging variance is calculated to reflect the needs for installing RWIS stations for improved WRM operations (i.e., increase of monitoring capability)

A Simple Example:

Collective use of information from individual RWIS stations

SEMI-VARIOGRAM – BUILDING A SPATIAL STRUCTURE

Semivariogram is used to quantify the underlying spatial structure of the regionalized random variable to be monitored.

PROBLEM FORMULATION

The objective is to minimize the sum of average kriging variance and maximize the coverage of collision-prone areas based on the configuration of RWIS network.

OPTIMIZATION WITH SPATIAL SIMULATED ANNEALING

The optimization was run over a total of 10,000 iterations in generating locational attributes.

Case Study

ONTARIO RWIS NETWORK

LARGE-SCALE DATA PROCESSING USING GIS

The optimizations were performed on a windows operating desktop equipped with a 3.39 GHz processor and 8.00 GB of RAM

THE OPTIMIZATION AND ITERATION SCHEDULE

The optimization was run over a total of 10,000 iterations in generating each optimal network design solution

Conclusions

- The proposed method is the first of its kind that provides transportation agencies with a tool that helps them evaluate the current RWIS network and determine the optimal location and density of RWIS stations.
- The proposed method represents the first attempt to address the challenging problem with a formal mathematical programming approach.
- More case studies should be conducted to investigate the generality and sensitivity of the model results to external conditions including network size, size of grid, parameters used in the SEA, and input parameters including use of other traffic variables and weather variables.

Acknowledgements

- The authors wish to acknowledge Ontario Ministry of Transportation for providing the data essential to this study.
- This research was funded by the Aurora Program, and was partially funded by Natural Sciences and Engineering Research Council of Canada (NSERC).

Application

ALL-NEW RWIS STATIONS

- For evaluating the location quality of the current RWIS network

Application cont’d

EXPANSION OF RWIS NETWORK

- For determining the location for additional RWIS stations

Network Improved by 14.7%

OPTIMAL DENSITY

A Comparison of RWIS Density Charts - per unit area (10,000km2)

Network Improved by 12.9%