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Abstract 
 
Road maintenance during the Winter season is a safety critical and resource demanding 
operation. One of its key activities is determining road surface condition (RSC) in order to prioritize 
roads and allocate cleaning efforts such as plowing or salting. Two conventional approaches for 
determining RSC are: visual examination of roadside camera images by trained personnel and 
patrolling the roads to perform on-site inspections. However, with more than 500 cameras 
collecting images across Ontario, visual examination becomes a resource-intensive activity, 
difficult to scale especially during periods of snowstorms. This paper presents the results of a 
study focused on improving the efficiency of road maintenance operations. We use multiple Deep 
Learning models to automatically determine RSC from roadside camera images and weather 
variables, extending previous research where similar methods have been used to deal with the 
problem. The dataset we use was collected during the 2017-2018 Winter season from 40 stations 
connected to the Ontario Road Weather Information System (RWIS), it includes 14.000 labeled 
images and 70.000 weather measurements. We train and evaluate the performance of seven 
state-of-the-art models from the Computer Vision literature, including the recent DenseNet, 
NASNet, and MobileNet. Moreover, by following systematic ablation experiments we adapt 
previously published Deep Learning models and reduce their number of parameters to about 
~1.3% compared to their original parameter count, and by integrating observations from weather 
variables the models are able to better ascertain RSC under poor visibility conditions. 
 
 
Introduction 
 
Road maintenance during the Winter is a safety critical operation that requires a significant 
amount of resources. In countries located in Northern latitudes, such as Canada, The United 
States, and Finland, Winter road maintenance is a priority for Government Offices at multiple 
levels. While these countries have made substantial efforts to ensure that the roads are suitable 
for the transportation of passengers and goods during the Winter, achieving a tradeoff between 
safety and resources expended is a challenge they face every year.  
 
Road safety 
 
Driving when there is snow or ice on the roads is not only more difficult but also more dangerous. 
The harsh weather conditions during the Winter are recognized as key factors associated with a 
higher probability of collisions [1] [2] due to circumstances such as poor road surface friction [3]. 
Moreover, the risk of fatality also increases in accidents occurring in periods of snow falls or even 
after snow falls if the road surface has not been cleaned timely and thoroughly [4]. Transportation 
offices are aware of these numbers and plan accordingly, with specific measures to prioritize road 
monitoring and cleaning as part of their short-term plans and long-term road safety strategies. 
 
Being one of the largest countries in the Northern hemisphere, Canada deals with Winter road 
maintenance operations over thousands of kilometers of urban and rural roads every year. Even 
though it is a country with experience on how to keep its roads operative in the Winter, there is 
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still room for improvement in terms of road safety. For instance, in the year 2013, more highway 
fatalities due to snow or ice conditions were reported in the province of Ontario in Canada 
compared to the previous year [5]. On the positive side, also in Ontario the benefits of a timely 
winter road maintenance have been quantified [6], highlighting the importance of data-driven 
methods for improving operations. 
 
Road maintenance costs and operations 
 
The cost of Winter road maintenance is significantly higher than that spent in other seasons of 
the year. For instance, according to the Ministry of Transportation in Ontario (MTO), about 50% 
of the total budget disbursed for highway maintenance corresponds to snow and ice cleaning 
during the Winter [7]. In Montreal, the budget for snow and ice removal is approximately 150 
million CAD annually [8], with similar figures in Toronto (90 million CAD) [9] and Ottawa (68 million 
CAD) [10].  
 
In Canada, every province has autonomy in how they manage Winter road maintenance 
operations. Depending on the strategy established by the Transportation offices at the provincial 
or municipal level, the maintenance is done directly by the Transportation offices or by private 
contractors. Moreover, the standards for maintaining road surface condition during the Winter 
also differ across provinces according to their particular needs and environmental conditions [8].  
However, in a recent report published by the Office of the Auditor General of Ontario, road safety 
concerns were raised due to the outsourcing of snow and ice removal operations to private 
contractors, including observations about the lack of a proper system to oversee snow removal 
operations and tools to monitor road surface cover during snow falls [5]. 
 
Multiple activities need to be scheduled and coordinated by the Transportation offices in order to 
keep roads with the minimal possible amount of snow and ice so the drivers can use the road 
network safely. For this purpose, the transportation offices commonly use Road Surface Condition 
(RSC) as a measure to identify the current state of the road regarding snow or ice coverage, 
serving also as a communication mechanism between stakeholders across the whole operation. 
More specifically, RSC introduces several categories to quantify the current amount of snow cover 
over a road. In Ontario, the Ministry of Transportation (MTO) uses three main categories to identify 
whether the road is bare, partly covered, or fully covered [11]. Examples of images for each 
category are shown in Figure 1. 
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Figure 1. Example images from a roadside camera near Otter lake in Ontario.                                        

Left: Bare pavement. Center: Partial snow cover. Right: Full snow cover. 

In terms of logistics, the overall Winter road maintenance operation commonly involves two major 
stages. First, a road monitoring stage continuously checks road surface coverage when snowfall 
is highly likely to occur, then, once the snowfall has stopped a cleaning stage begins and the 
necessary resources, such as plowing and salting, are assigned to promptly remove snow or ice 
accordingly. The road monitoring stage commonly involves patrolling by trained inspectors as well 
as observation through roadside cameras and weather stations. Even though patrolling is the 
most accurate method to identify RSC, it is also costly, and its coverage is limited to only those 
roads traveled by the inspectors.  
 
Road Weather Information Systems (RWIS) 
 
The Road Weather Information System (RWIS) was introduced as a network of advanced stations 
to continuously monitor roads at certain locations, improving the coverage and complementing 
the conventional road patrolling [7]. In general, RWIS stations include roadside cameras along 
with weather sensors to measure variables such as air temperature, wind speed, pressure, and 
humidity. Depending on the vendor and the configuration, the stations can also have embedded 
pavement sensors to determine road surface temperature.  
 
Previous research related to RWIS stations has focused primarily on quantifying their overall 
benefits for road Winter maintenance, both in terms of safety and cost savings [12] [13], as well 
as best practices for determining their optimal locations over an area of interest [14] [15]. The 
evidence on previous studies confirms the relevance of RWIS stations for Winter maintenance 
operations, with networks of stations installed across North America and Northern Europe. 
However, with dozens or even hundreds of stations collecting data 24 hours per day, it is difficult 
for the operators of those sensor networks to process all that data simultaneously and perform 
decision making in almost real time during snowfalls. 
 
Automated processing of RWIS stations data is potentially beneficial for multiple stakeholders 
involved in the Winter road maintenance operations. On one hand, private companies hired by 
Transportation offices monitor the roads using the RWIS network and send salt trucks and 
snowplows to maintain road surface standards when needed. On the other hand, Transportation 
offices also monitor the roads through the RWIS network to oversee the private contractor’s work 
and publish road status information to the general public.  
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Deep Learning (DL) methods are a subset of Machine Learning (ML) methods resulting from a 
combination of advanced algorithms and math [16]. The remarkable achievements of DL methods 
across multiple applications are also attributed to the recent availability of powerful computing 
hardware, mainly Graphic Processing Units (GPUs) to train DL models. One of the fields where 
DL methods have achieved remarkable results is in Computer Vision, showing state-of-the-art 
accuracy in tasks such as image classification, object detection, and semantic segmentation. In 
most of the major Computer Vision research conferences, such as CVPR, ICCV, and IGARSS, 
DL methods have consistently shown better performance across applications like Medical 
Imaging, Autonomous Vehicles, Remote Sensing, Face Recognition, among other fields. 
Recently, a handful of studies have evaluated the use of DL to automate the classification of 
images with the purpose of determining RSC during the Winter, with remarkable results over 
images from dash cameras [17][18][19][20]. However, fewer studies have tested DL methods for 
determining RSC from images collected by roadside cameras. One example is the work of Pan 
et. al. [21], in which they adapt DL models trained over the ImageNet dataset to the task of RSC 
classification using the fine-tuning technique, achieving an accuracy of more than 90%. 
 
Research objectives and contributions 
 
The objectives of this study are twofold. First, we aim to extend previous work regarding the use 
of DL methods for automated classification of RSC using images from roadside cameras with a 
particular focus on evaluating state-of-the-art image classification methods such as DenseNet 
[22], NASNet [23], and MobileNet [24]. Secondly, we want to determine experimentally if the use 
of weather variables as a complementary data source improves the classification accuracy.  
 
This paper is divided into three major sections. The first section describes the area of study as 
well as the datasets we use. In the second section, we evaluate multiple DL models for 
classification of RSC and in the last part, we include weather data as an additional source of data 
and assess the improvement on classification accuracy. To the best of our knowledge, this is the 
first study that looks at the combined use of roadside camera images and weather data for the 
automated determination of RSC. Additional contributions of this study include Python source 
code to replicate all the experiments presented in the paper. See  
 
 
Area of study and data 
 
The area of study comprises the center and south part of the province of Ontario in Canada, which 
hosts approximately 38% of the population in the North American country. The road network in 
the province extends along more than 275.000 km including all categories of roads, such as 
highways and municipal roads [25]. However, most of the population and therefore the roads are 
in the southern area. Weather conditions can vary drastically across the province, due mainly to 
the large range of latitude it covers, from approximately 42° N to 56° N, and the weather effects 
caused by the Great Lakes in its south-west side. For this reason, about 140 RWIS stations have 
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been installed by the Ministry of Transportation in Ontario to help monitor the road conditions and 
weather in carefully selected locations across the province. 
 
For this study, we selected a sample of 40 RWIS stations shown in Figure 2, which collected data 
approximately every 15 minutes for the Winter of 2017-2018. The data includes 14.000 images 
taken by the roadside cameras as well as 70.000 observations from five weather variables 
measured by instruments installed on every station. Every image was labeled according to one 
of the three RSC categories listed by the Ministry of Transportation in Ontario, with approximately 
45% of images corresponding to bare pavement, 40% to partial snow cover, and 15% to full snow 
cover. The recorded weather variables are Air Temp (°C), Relative Humidity (%), Pressure (kPa), 
Wind Speed (km/h), and Dew Point (°C). 

 
Figure 2. Location of the sample 40 RWIS stations in the province of Ontario. 

 
Classification of Road Surface Condition with Deep Learning models 
 
DL methods have achieved remarkable accuracy for tackling multiple Computer Vision tasks in 
both research and industry settings, with applications ranging from automated diagnosis in 
medical imaging to quick detection of cyclists and pedestrians in autonomous vehicles, just to 
name a few. One of the factors that have influenced the rise of DL is the current availability of 
large datasets, such as ImageNet [26] with millions of images labeled according to predefined 
classes, which are essential for training DL algorithms. However, having such large datasets is 
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not common for industry-specific applications; therefore, researchers have developed a practice 
called fine-tuning in which DL models trained over large and generic image datasets are adapted 
for classification of images in other domains. 
 
DL models are an evolution of a simpler type of model called the Multi-Layer Perceptron, which 
takes an input vector and uses consecutive groups of non-linear functions called layers to produce 
higher-level representations of the input data. In contrast, DL models use many layers, each one 
taking as input the output of the previous one. Most DL models fall into the category of supervised 
learning because their goal is to make the model create a mapping from input observations into 
the desired output, in our particular case we expect the DL models to receive images from 
roadside cameras as input and output the correspondent RSC category as defined by MTO. 
Figure 3 shows a simplified description of the architecture of DL models for image classification. 
An input image is represented as a three-dimensional matrix, with the height, width, and Red 
Green Blue (RGB) channels of the image as its initial dimensions. This input image moves through 
the layers in the model and in the end, the model outputs a vector of probabilities, with the highest 
probability corresponding to the most likely RSC category for the image.  
 

 
Figure 3. The generic architecture of a DL model for image classification. Image source: mathworks.com 

The first part of DL models for image classification (feature learning) includes a series of 
convolutional and pooling layers that gradually convert the information contained on the input 
image into a compressed vector representation with smaller height and width but a larger number 
of channels than the original image. Convolutional layers are also known as filters that summarize 
an input matrix into one with smaller dimensions. In other words, these layers learn how to detect 
features such as shapes, contrast patterns, and color variations, and pass along a simplified 
representation of this features to the following layers. 
 
The second part (classification) starts with a layer (flatten) that converts the three-dimensional 
vector from the first section into a one dimensional vector that is then feed into a few fully 
connected layers that reduce even more the size of the vector representation, and finally a 
softmax layer that outputs probability values for each category in the classification task. Fully 
connected layers are usually implemented in the last part of the models to summarize the visual 
features detected by previous layers. Most DL models have many convolutional layers but only a 
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few fully connected layers because the number of parameters in the latter ones is much higher, 
which in turn requires more computational resources to train the models. 
 
The design of a DL model also includes the consideration of multiple hyperparameters, and their 
role is crucial for the successful implementation of the model. The designer can set 
hyperparameters to manage multiple aspects of the model and fine-tuning them commonly 
requires significant effort and domain knowledge of the application. By setting those parameters 
the designer can define the number of neurons per layer, the type of non-linear functions to use 
(activation functions), the number of times the dataset is passed through the model during training 
(epochs), how fast the model learns (learning rate), the Dropout regularization rate, among other 
characteristics of the model definition and training. In practice, researchers focus on fine-tuning 
the most relevant hyperparameters based on previous literature and their experimental findings. 
DL models to compare 
 
We select six DL models that have scored state-of-the-art accuracy over the ImageNet image 
classification benchmark and evaluate how they perform for the classification of RSC over images 
from roadside cameras. All six models have been previously trained using the ImageNet dataset, 
which includes images of everyday objects such as animals, artifacts, and plants, among other 
classes.  The goal is to fine-tune or retrain only a small portion, generally the latest portion, of 
those models in order to adapt them into the RSC image classification task. The underlying 
hypothesis is that the initial part of those DL models trained on large datasets has learned to 
identify basic patterns that are useful for classifying objects across multiple domains. 
 
The DL image classification models we choose are Inception-v3 [27], Inception-Resnet-v2 [28], 
Xception [29], DenseNet169 [22], MobileNetv2 [24], and NASNet [23]. For all these models we 
kept the configuration of layers, training, hyperparameters, and regularization techniques as 
published in the original papers. When running the fine-tuning process, we consider previous 
settings from the work by Pan et. al. [21] who also explored the use of DL models for RSC 
classification, as well as other literature for fine-tuning image classification models [30][31][32].  
 
In addition, we design a rather simple model inspired by seminal works in DL such as AlexNet 
[33] and VGG [34]. This baseline model has approximately 3.7% of the number of layers and 
4.2% of the number of parameters when compared with the average characteristics of the other 
six models. Table 1 presents a summary of the characteristics of all seven models considered. 
Layers used for data reduction (max-pooling), model regularization (dropout), and vector 
concatenation are also counted as part of the total number of layers. 
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Table 1. Main characteristics of the DL models selected for comparison.

 
 
Model training 
 
All seven models are trained and validated using 80% of the total number of images (14.000). 
The remaining 20% is held as a test set and we only use it for reporting accuracy in the end. 
Within the 80% of training data, 20% is taken for validation and plotting of the accuracy and loss 
functions during the training stage. We use the Backpropagation algorithm and Stochastic 
Gradient Descent (SGD) as optimizer to minimize the classification error (loss). Learning rate is 
kept constant at 0.001. Other parameters for the SGD optimizer are set according to 
recommended values in the literature, such as momentum = 0.9 and Nesterov momentum 
enabled. The number of times (epochs) the training set is passed through each DL model to 
iteratively reduce the misclassification error is kept constant at 50 and the images are feed in 
groups of 32 (batch size) to reduce memory usage.  
 
Since the models have been previously trained using the ImageNet dataset, we only need to fine-
tune or retrain the last portion of them in order to adapt them to the RSC classification task, except 
for the baseline model that needs to be trained from scratch. We consider three fine-tuning 
scenarios in which different percentages of the models are retrained, starting with only the fully 
connected layers, then fine-tuning only the last 5% and 15% of the models, including some of the 
last convolutional layers. During the training, a validation set is kept apart to continuously evaluate 
how the model performs over unseen images.  
 
Results 
 
Figures 4, 5, and 6 summarize the training and validation accuracy scored by the models when 
fine-tuning the fully connected layers and the last 5% and 15% percent of the models, except for 
the baseline model in which all the layers are trained from scratch. To our surprise, the baseline 
model achieved a competitive accuracy while all six state-of-the-art models show signs of 
overfitting, which means they learned successfully how to classify images in the training set but 
are unable to correctly classify images not seen during the training stage.  
 
Overfitting is a common issue in Machine Learning, and it happens in cases where the model is 
too complex for a task and as a result, it memorizes the characteristics of the training set. In other 
words, the model does not generalize well for data samples not observed during training, like the 
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images in the validation or the test sets. Multiple regularization techniques are available to avoid 
or mitigate overfitting in DL models, such as reducing the number of layers, reducing the number 
of neurons, or using Dropout layers that randomly disconnect certain connections between 
neurons, among others.  
 
To avoid overfitting in our study, we use three Dropout layers with a rate of 0.5 between the fully 
connected layers of all models. The rate defines the frequency at which the connections between 
neurons in those layers are randomly dropped, the higher the rate the stronger the regularization 
effect; however, using a rate that is too high could hinder the ability of the model to learn any 
meaningful patterns during training.  
 
The number of Dropout layers as well as the rate we use are appropriate according to the 
practices commonly found in the literature for these type of DL models. It is worth to note that 
each of the DL models we used from the literature already includes their own strategies to mitigate 
overfitting; therefore, we do not apply additional measures. Instead, we introduce the baseline 
model with the goal of evaluating the performance of a much simpler architecture with a 
significantly smaller number of layers and parameters. 
 

 
Figure 4. Finetuning only the fully connected layers. 
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Figure 5. Finetuning the last 5% of layers. 

 

 
Figure 6. Finetuning the last 15% of layers. 

Increasing the number of fine-tuned layers for the RSC classification task produces higher 
accuracy in the training set; however, it also affects considerably the accuracy on the validation 
set. In other words, the more layers we fine-tune the stronger the overfitting effect, with extreme 
cases such as the MobileNetv2 model, which scores 98.59% training accuracy but only 54.44% 
validation accuracy when the last 15% of the model is retrained. On the other hand, the baseline 
model scores more than 93% classification accuracy in both the training and validation sets. To 
better illustrate these findings, we show the variation of the loss and accuracy functions during 
the training of the MobileNetv2 model in Figure 7 and the baseline model in Figure 8. 
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Figure 7. Fine-tuning the last 15% of the MobileNetv2 model. Left: Loss function. Right: Accuracy. 

 

    
Figure 8. Training of the baseline model. Left: Loss function. Right: Accuracy. 

On average, the difference between the final training and validation accuracy for the six state-of-
the-art models is 18.2% when finetuning only the fully connected layers, 26.6% when finetuning 
the last 5% of layers, and 29.7% when finetuning the last 15% of layers. In contrast, the difference 
between the final training and validation accuracy for the baseline model is just 1.3%.  
 
To summarize, the desired performance for any Machine Learning model is to have high accuracy 
in both the training and validation sets; however, in our experiments, this goal was only achieved 
by the baseline model. While multiple explanations can clarify these results, the most reasonable 
one is that the RSC image classification task might not require those complex DL models and a 
competitive accuracy can be scored using a simpler DL model like the baseline. 
Ablation study 
 
We also investigate how much we can simplify the baseline model without affecting the resulting 
classification accuracy. Experiments that remove some parts of a Machine Learning model and 
look at the effects it produces on the model performance are known as ablation studies and are 
recommended especially for DL models [35][36]. We explore two different ways to reduce the 
complexity of the baseline model while maintaining its classification accuracy. The first is focused 
on reducing the number of channels in the intermediate convolutional layers (feature learning 
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part) and the second looks at reducing the number of neurons in the fully connected layers 
(classification part). Figure 9 shows the initial architecture of our baseline model. 
 

 
Figure 9. The architecture of the baseline model. 

In this model, the number of channels doubles from one convolutional layer to the following, the 
same as in the architecture of VGG [34]. We call the rate at which the number of channels grows 
as Incremental Channels Factor (ICF) and explore the effect of using an ICF smaller than two. 
Figure 10 shows the effects of reducing the ICF in the baseline model where the area of the circles 
is representative of the total number of parameters in the model. Lowering the ICF reduces the 
validation accuracy; however, the decrement is not significant when the value is kept equal or 
above ~1.7; therefore, we move forward using this number. Using a smaller ICF also reduces the 
number of parameters by approximately 54%, from 996,019 parameters in the original baseline 
model down to 460,247, which means a significant gain in memory efficiency. 
 

 
Figure 10. Change in validation accuracy as a result of reducing the number of channels between 

convolutional layers. 

The next strategy we use to lessen the complexity of the baseline model focuses on the gradual 
reduction of the number of neurons in the classification part of the model. The original baseline 
model uses a combination of 48 and 24 neurons in the first and second fully connected layers, 
and 3 neurons in the last classification layer, which adds up to a total of 75 neurons. We note that 
the number of neurons in the last layer must be kept equal to the number of categories in the 
classification task, which is 3 for determining RSC (bare pavement, partial cover, full cover).  
 

Feature Learning Classification 
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On each consecutive experiment, we eliminate 6 neurons in the first fully connected layer and 3 
neurons in the second, until we end up with a combination of 6, 3, and 3 neurons for a total of 12 
units in the classification part of the model. Figure 11 shows how the accuracy is affected by 
gradually reducing the number of neurons from a total of 75 down to 12, along with the 
correspondent reduction in the total number of parameters in the model represented by the area 
of the circles. The validation accuracy drops drastically when the total number of neurons goes 
below 30; therefore, we move on using a total of 39 units in order to keep the accuracy above 
90%, which left us with a total of 301,727 parameters. 
 

 
Figure 11. Change in validation accuracy as a result of reducing the number of neurons in the 

classification part of the model. 

 
The results of the ablation study allow us to lower the complexity of the baseline model without a 
significant reduction in validation accuracy. This simplified version of the baseline model includes 
about 30% the number of parameters compared to the original one and only 1.3% when compared 
to the average number of parameters in the six state-of-the-art models we evaluate in the previous 
section. 
 
Even though the accuracy went from ~93% to ~91% during the ablation study, our purpose here 
is to explore the effects of multiple design criteria rather than scoring the maximum possible 
accuracy. Using DL models with a fewer number of parameters is highly desirable for reducing 
training time during the design stage and for deployment in a production environment, especially 
for applications where input images come from hundreds of cameras every 10 to 15 minutes like 
in the case of determining RSC for roads in the province of Ontario. 
Complimentary use of Weather observations 
 
In this section, we evaluate the benefits of using weather data along with images from roadside 
cameras as input for monitoring RSC. RWIS stations can have different sensors depending on 
the vendor; however, most stations record at least the following five variables: Air Temperature 
(°C), Dew Point (°C), Relative Humidity (%), Pressure (kPa), and Wind Speed (km/h). For each 
image in the dataset (14,000) we obtain these five variables, for a total of 70,000 weather 
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observations; however, since Dew Point is usually inferred from Air Temperature and Relative 
Humidity, we discard that variable for the subsequent analysis. 
 
We concatenate the output of the simplified baseline model (SBM) with the values of the weather 
variables recorded in the same instant and location as the input image. The resulting vector 
includes seven features in total. About 1.7% of observations for Relative Humidity and 0.26% for 
Wind Speed appear as Null values; therefore, we fill those gaps with their corresponding average 
per feature. Z-score standardization per feature was also used. Three Machine Learning models 
for classification are considered: Random Forest (RF), Support Vector Machine (SVM), and Naïve 
Bayes (NB). For all three we use grid search and cross-validation to find an appropriate set of 
parameters and plot the normalized confusion matrices over the test set as shown in Figure 12. 
 

           
                                         Using only the SBM.                                              SBM + Weather, RF classifier. 
 

           
                                       SBM + Weather, SVM classifier.                                   SBM + Weather, NB classifier 
 

Figure 12. Normalized confusion matrices calculated over the test set.  

The normalized confusion matrices show that including weather data improves the ability of the 
models to distinguish images with full snow coverage, with increments of 3%, 4%, and 5% in test 
accuracy when using the RF, SVM, and NB models accordingly. However, these improvements 
are in part due to a slight reduction in the classification accuracy for the other two categories. 
Based on the experimental results, we suggest using the Naïve Bayes classifier to achieve the 
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highest accuracy per RSC category, although the F1-scores for the three models are very similar, 
with 91.78% for RF, 91.80% for SVM, and 91.24% for NB. 
 
The optimal combination of parameters found during the grid search procedure for the three 
methods are as follow: 
• Random Forest: Number of trees = 50, max depth = 6, and minimum samples per leaf = 4 
• SVM: Kernel is radial basis function, penalty of the error term = 100, and gamma = 0.1 
• Naïve Bayes: Variable smoothing = 0.01 

 
 
Conclusions and future work 
 
The results of this study confirm the effectiveness of DL models for determining RSC from 
roadside camera images. We evaluate the performance of seven DL models under multiple 
training and fine-tuning scenarios and select the baseline model as the one that produces the 
best experimental accuracy. We then explore the simplification of the baseline model through an 
ablation study and find that we can achieve ~91% accuracy using a model that is 98.7% smaller 
than recently published state-of-the-art DL models. However, we are aware that these results are 
only indicative of the performance of these models for our specific application. Furthermore, we 
find that using weather data slightly improves the classification accuracy for images in the fully 
covered RSC category. 
 
While there is a direct applicability of the methods presented in this paper to improve Winter road 
maintenance operations, some challenges are worth to note, such as the required changes for 
the current technology infrastructure in order to accommodate the new software components 
running these automated tasks, as well as the introduction of visualization dashboards in the 
monitoring centres for the aggregation of results. 
 
We highlight the value of the experimental results presented in this study toward the automated 
detection of RSC for Winter road monitoring, not only for improving road safety but also for 
resource optimization. The contributions of this paper are aligned with one of the strategic 
objectives of Canada’s Road Safety Strategy 2025: “Leveraging technology and innovation” and 
two of the key road safety suggested interventions: use of technology and data-driven research 
[1]. Moreover, the use of Machine Learning techniques for automating data processing can 
complement other applications on Winter road safety such as accident prediction models [37]. 
 
Future research should focus on replicating this study in other provinces across Canada and 
countries in the Northern hemisphere, as well as exploring the integration of these automated 
methods with the software architecture of the current monitoring systems. 
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